It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Breast cancer is the most frequent malignancy in women and drug resistance is the major obstacle for its successful chemotherapy. In the present study, we analyzed the involvement of an oncofetal gene, sal-like 4 (SALL4), in the tumor proliferation and drug resistance of human breast cancer.
Results
Our study showed that SALL4 was up-regulated in the drug resistant breast cancer cell line, MCF-7/ADR, compared to the other five cell lines. We established the lentiviral system expressing short hairpin RNA to knockdown SALL4 in MCF-7/ADR cells. Down-regulation of SALL4 inhibited the proliferation of MCF-7/ADR cells and induced the G1 phase arrest in cell cycle, accompanied by an obvious reduction of the expression of cyclinD1 and CDK4. Besides, down-regulating SALL4 can re-sensitize MCF-7/ADR to doxorubicin hydrochloride (ADMh) and had potent synergy with ADMh in MCF-7/ADR cells. Depletion of SALL4 led to a decrease in IC50 for ADMh and an inhibitory effect on the ability to form colonies in MCF-7/ADR cells. With SALL4 knockdown, ADMh accumulation rate of MCF-7/ADR cells was increased, while the expression of BCRP and c-myc was significantly decreased. Furthermore, silencing SALL4 also suppressed the growth of the xenograft tumors and reversed their resistance to ADMh in vivo.
Conclusion
SALL4 knockdown inhibits the growth of the drug resistant breast cancer due to cell cycle arrest and reverses tumor chemo-resistance through down-regulating the membrane transporter, BCPR. Thus, SALL4 has potential as a novel target for the treatment of breast cancer.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer