It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Adenylate kinase is a key enzyme in the high-energy phosphoryl transfer reaction in living cells. An isoform of this enzyme, adenylate kinase 4 (AK4), is localized in the mitochondrial matrix and is believed to be involved in stress, drug resistance, malignant transformation in cancer, and ATP regulation. However, the molecular basis for the AK4 functions remained to be determined.
Methods
HeLa cells were transiently transfected with an AK4 small interfering RNA (siRNA), an AK4 short hairpin RNA (shRNA) plasmid, a control shRNA plasmid, an AK4 expression vector, and a control expression vector to examine the effect of the AK4 expression on cell proliferation, sensitivity to anti-cancer drug, metabolome, gene expression, and mitochondrial activity.
Results
AK4 knockdown cells treated with short hairpin RNA increased ATP production and showed greater sensitivity to hypoxia and anti-cancer drug, cis-diamminedichloro-platinum (II) (CDDP). Subcutaneous grafting AK4 knockdown cells into nude mice revealed that the grafted cells exhibited both slower proliferation and reduced the tumor sizes in response to CDDP. AK4 knockdown cell showed a increased oxygen consumption rate with FCCP treatment, while AK4 overexpression lowered it. Metabolome analysis showed the increased levels of the tricarboxylic acid cycle intermediates, fumarate and malate in AK4 knockdown cells, while AK4 overexpression lowered them. Electron microscopy detected the increased mitochondrial numbers in AK4 knockdown cells. Microarray analysis detected the increased gene expression of two key enzymes in TCA cycle, succinate dehydrogenase A (SDHA) and oxoglutarate dehydrogenease L (OGDHL), which are components of SDH complex and OGDH complex, supporting the metabolomic results.
Conclusions
We found that AK4 was involved in hypoxia tolerance, resistance to anti-tumor drug, and the regulation of mitochondrial activity. These findings provide a new potential target for efficient anticancer therapies by controlling AK4 expression.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer