It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Continuous and excessive application of deltamethrin (DM) has resulted in the rapid development of insecticide resistance in Culex pipiens pallens. The quantitative trait loci (QTL) responsible for resistance to DM had previously been detected in Cx. pipiens pallens. But locating the QTLs on the chromosomes remained difficult. An available approach is to first characterize DNA molecular markers linked with the phenotype, and then identify candidate genes.
Methods
In this study, the amplified fragment length polymorphism (AFLP) marker L3A8.177 associated with the QTL, was characterized. We searched for potential candidate genes in the flank region of L3A8.177 in the genome sequence of the closely related Cx. pipiens quinquefasciatus and conducted mRNA expression analysis of the candidate gene via quantitative real-time PCR. Then the relationship between DM resistance and the candidate gene was identified using RNAi and American CDC Bottle Bioassay in vivo. We also cloned the ORF sequences of the candidate gene from both susceptible and resistant mosquitoes.
Results
The genes CYP6CP1 and protease m1 zinc metalloprotease were in the flank region of L3A8.177 and had significantly different expression levels between susceptible and resistant strains. Protease m1 zinc metalloprotease was significantly up-regulated in the susceptible strains compared with the resistant and remained over-expressed in the susceptible field-collected strains. For deduced amino acid sequences of protease m1 zinc metalloprotease, there was no difference between susceptible and resistant mosquitoes. Knockdown of protease m1 zinc metalloprotease not only decreased the sensitivity of mosquitoes to DM in the susceptible strain but also increased the expression of CYP6CP1, suggesting the role of protease m1 zinc metalloprotease in resistance may be involved in the regulation of the P450 gene expression.
Conclusion
Our study represents an example of candidate genes derived from the AFLP marker associated with the QTL and provides the first evidence that protease m1 zinc metalloprotease may play a role in the regulation of DM resistance in Cx. pipiens pallens.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer