Abstract

Recent findings in molecular biology implicate the involvement of proprotein convertase subtilisin/kexin type 9 (PCSK9) in low-density lipoprotein receptor (LDLR) protein regulation. The cholesterol-lowering potential of anti-PCSK9 antisense oligonucleotides (AONs) modified with bridged nucleic acids (BNA-AONs) including 2[variant prime],4[variant prime]-BNA (also called as locked nucleic acid (LNA)) and 2[variant prime],4[variant prime]-BNA NC chemistries were demonstrated both in vitro and in vivo. An in vitro transfection study revealed that all of the BNA-AONs induce dose-dependent reductions in PCSK9 messenger RNA (mRNA) levels concomitantly with increases in LDLR protein levels. BNA-AONs were administered to atherogenic diet-fed C57BL/6J mice twice weekly for 6 weeks; 2[variant prime],4[variant prime]-BNA-AON that targeted murine PCSK9 induced a dose-dependent reduction in hepatic PCSK9 mRNA and LDL cholesterol (LDL-C); the 43% reduction of serum LDL-C was achieved at a dose of 20 mg/kg/injection with only moderate increases in toxicological indicators. In addition, the serum high-density lipoprotein cholesterol (HDL-C) levels increased. These results support antisense inhibition of PCSK9 as a potential therapeutic approach. When compared with 2[variant prime],4[variant prime]-BNA-AON, 2[variant prime],4[variant prime]-BNA NC -AON showed an earlier LDL-C-lowering effect and was more tolerable in mice. Our results validate the optimization of 2[variant prime],4[variant prime]-BNANC -based anti-PCSK9 antisense molecules to produce a promising therapeutic agent for the treatment of hypercholesterolemia.

Details

Title
Cholesterol-lowering Action of BNA-based Antisense Oligonucleotides Targeting PCSK9 in Atherogenic Diet-induced Hypercholesterolemic Mice
Author
Yamamoto, Tsuyoshi; Harada-shiba, Mariko; Nakatani, Moeka; Wada, Shunsuke; Yasuhara, Hidenori; Narukawa, Keisuke; Sasaki, Kiyomi; Shibata, Masa-aki; Torigoe, Hidetaka; Yamaoka, Tetsuji; Imanishi, Takeshi; Obika, Satoshi
Pages
e22
Publication year
2012
Publication date
May 2012
Publisher
Elsevier Limited
e-ISSN
21622531
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1798220710
Copyright
Copyright Nature Publishing Group May 2012