It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Phosphoinositide-dependent protein kinase-1 (PDK-1), which functions downstream of phosphoinositide 3-kinase (AGE-1) and activates protein kinases of the AGC family, plays critical roles in regulating biology processes, such as metabolism, growth, development and survival. In the free-living nematode Caenorhabditis elegans, PDK-1 is a key component of the insulin-like signalling pathway, regulating the entry into and exit from dauer (arrested development). Although it is proposed that similar molecular mechanisms control the transition from the free-living to the parasitic stages of nematodes, nothing is known about PDK-1 in Haemonchus contortus, a socioeconomically important gastric nematode of ruminants.
Methods
Here, we isolated and characterized the pdk-1 gene (Hc-pdk-1) and its inferred product (Hc-PDK-1) from H. contortus. Using in vitro and in vivo methods, we then studied the transcriptional profiles of Hc-pdk-1 and anatomical gene expression patterns of Hc-PDK-1 in different developmental stages of C. elegans.
Results
In silico analysis of Hc-PDK-1 displayed conserved functional domains, such as protein kinase and pleckstrin homology (PH) domains and two predicted phosphorylation sites (Thr226/Tyr229), which are crucial for the phosphorylation of downstream signalling. The Hc-pdk-1 gene is transcribed in all of the main developmental stages of H. contortus, with its highest transcription in the infective third-stage larvae (iL3) compared with other stages. Transgene constructs, in which respective promoters were fused to the coding sequence for green fluorescent protein (GFP), were used to transform C. elegans, and to localize and compare the expression of Hc-pdk-1 and Ce-pdk-1. The expression of GFP under the control of the Hc-pdk-1 promoter was localized to the intestine, and head and tail neurons, contrasting somewhat the profile for the C. elegans ortholog, which is expressed in pharynx, intestine and head and tail neurons.
Conclusions
This is the first characterization of pdk-1/PDK-1 from a trichostrongyloid nematode. Taken together, the findings from this study provide a first glimpse of the involvement of Hc-pdk-1 in the insulin-like signalling pathway in H. contortus.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer