Full text

Turn on search term navigation

Copyright Nature Publishing Group Jun 2016

Abstract

Bioengineered spider silks are a biomaterial with great potential for applications in biomedicine. They are biocompatible,biodegradable and can self-assemble into films, hydrogels, scaffolds, fibers, capsules and spheres. A novel, tag-free, bioengineered spider silk named MS2(9x) was constructed. It is a 9-mer of the consensus motif derived from MaSp2-the spidroin of Nephila clavipes dragline silk. Thermal and acidic extraction methods were used to purify MS2(9x). Both purification protocols gave a similar quantity and quality of soluble silk; however, they differed in the secondary structure and zeta potential value. Spheres made of these purified variants differed with regard to critical features such as particle size, morphology, zeta potential and drug loading. Independent of the purification method, neither variant of the MS2(9x) spheres was cytotoxic, which confirmed that both methods can be used for biomedical applications. However, this study highlights the impact that the applied purification method has on the further biomaterial properties.

Details

Title
The method of purifying bioengineered spider silk determines the silk sphere properties
Author
Jastrzebska, Katarzyna; Felcyn, Edyta; Kozak, Maciej; Szybowicz, Miroslaw; Buchwald, Tomasz; Pietralik, Zuzanna; Jesionowski, Teofil; Mackiewicz, Andrzej; Dams-kozlowska, Hanna
Pages
28106
Publication year
2016
Publication date
Jun 2016
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1798990334
Copyright
Copyright Nature Publishing Group Jun 2016