It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Contemporary biomedical research increasingly depends on techniques to induce or to inhibit expression of genes in hematopoietic stem cells (HSCs) or other primary cells to assess their roles on cellular processes including differentiation, apoptosis and migration. Surprisingly little information is available to optimize lentiviral transduction of HSCs. We have therefore carefully optimized transduction of murine and human HSCs by optimizing vector design, serum-free virus production and virus quantitation. We conclude that the viral RNA length, even in relatively small vectors, is an important factor affecting the lentiviral gene transfer on the level of both the virus production and the cellular transduction efficiency. Efficient transfer of large gene sequences into difficult-to-transduce primary cells will benefit from reducing the lentiviral construct size.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer