It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Here, a new method for the analysis of the steady state and the safety operational conditions of the hydrolysis of propylene oxide with excess of water, in a Continuous Stirred Tank Reactor (CSTR), was developed. For industrial operational typical values, at first, the generated and removed heat balances were examined. Next, the effect of coolant fluid temperature in the critical ignition and extinction temperatures (TCI and TCE, respectively) was analyzed. The influence of the heat exchange parameter (hS) on coolant and critical temperatures was also studied. Finally, the steady state operation areas were defined. The existence of multiple stable states was recognized when the heat exchange parameter was in the range 6.636 < hS kJ/(min.K) < 11.125. Unstable operation area was located between the TCI and TCE values, restricting the reactor operation area to the low stable temperatures.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer