Full text

Turn on search term navigation

© 2016 Zhou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Waxy maize is prevalently grown in China and other countries due to the excellent characters and economic value. However, its low content of lysine can’t meet the nutritional requirements of humans and livestock. In the present study, we introgressed the opaque2 (o2) allele into waxy maize line Zhao OP-6/O2O2 by using marker-assisted selection (MAS) technique and successfully improved the lysine content and quality of waxy maize. Transcript abundance analysis indicated that the wx1 expression levels had no difference between Zhao OP-6/o2o2 and Zhao OP-6/O2O2. However, Zhao OP-6/o2o2 was characterized by a phenotype of hard and vitreous kernels and accumulation of protein bodies at smaller size (one third of that of parents) but in larger numbers. Biochemical analyses showed that Zhao OP-6/o2o2 had 16.7% less free amino acids than Zhao OP-6/O2O2, especially those derived from glycolytic intermediates, but its content of lysine was increased by 51.6% (0.47% vs. 0.31%). The content of amylopectin was 98.5% in Zhao OP-6/o2o2, significantly higher than that in Zhao OP-6/O2O2 (97.7%). Proteomic analyses indicated that o2 introgression not only decreased the accumulation of various zein proteins except for 27-kDa γ-zein, but also affected other endosperm proteins related to amino acid biosynthesis, starch-protein balance, stress response and signal transduction. This study gives us an intriguing insight into the metabolism changes in endosperm of waxy maize introgressed with opaque2.

Details

Title
Introgression of opaque2 into Waxy Maize Causes Extensive Biochemical and Proteomic Changes in Endosperm
Author
Zhou, Zhiqiang; Song, Liya; Zhang, Xiaoxing; Li, Xinhai; Yan, Na; Xia, Renpei; Zhu, Hui; Weng, Jianfeng; Zhuanfang Hao; Zhang, Degui; Yong, Hongjun; Li, Mingshun; Zhang, Shihuang
First page
e0158971
Section
Research Article
Publication year
2016
Publication date
Jul 2016
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1802585917
Copyright
© 2016 Zhou et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.