Full text

Turn on search term navigation

© 2016 Perez-Branguli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The transmembrane semaphorin, Sema6A, has important roles in axon guidance, cell migration and neuronal connectivity in multiple regions of the nervous system, mediated by context-dependent interactions with plexin receptors, PlxnA2 and PlxnA4. Here, we demonstrate that Sema6A can also signal cell-autonomously, in two modes, constitutively, or in response to higher-order clustering mediated by either PlxnA2-binding or chemically induced multimerisation. Sema6A activation stimulates recruitment of Abl to the cytoplasmic domain of Sema6A and phos¡phorylation of this cytoplasmic tyrosine kinase, as well as phosphorylation of additional cytoskeletal regulators. Sema6A reverse signaling affects the surface area and cellular complexity of non-neuronal cells and aggregation and neurite formation of primary neurons in vitro. Sema6A also interacts with PlxnA2 in cis, which reduces binding by PlxnA2 of Sema6A in trans but not vice versa. These experiments reveal the complex nature of Sema6A biochemical functions and the molecular logic of the context-dependent interactions between Sema6A and PlxnA2.

Details

Title
Reverse Signaling by Semaphorin-6A Regulates Cellular Aggregation and Neuronal Morphology
Author
Perez-Branguli, Francesc; Zagar, Yvrick; Shanley, Daniel K; Graef, Isabella A; Chédotal, Alain; Mitchell, Kevin J
First page
e0158686
Section
Research Article
Publication year
2016
Publication date
Jul 2016
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1802585969
Copyright
© 2016 Perez-Branguli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.