524.[3]ALDH1A1*2 was observed at frequencies of 0.035, 0.023, 0.023 and 0.012 in Asian, Caucasian, Jewish and African-American individuals, respectively, while ALDH1A1*3 was only observed in African-American individuals, at a frequency of 0.029.[3] These polymorphisms also have been observed in Mission Indians of Southwest California, where an allele frequency of 0.03 was detected for ALDH1A1*2. Two subjects possessed the ALDH1A1*2 allele and one subject displayed both the ALDH1A1*2 and ALDH1A1*3 alleles.[21]
Trinidad and Tobago is a twin island country, located at the southern end of the Caribbean chain of islands, 10 km (seven miles) north-east of the coast of Venezuela. The population of the country is multi-ethnic but the two largest ethnic groups are those of East Indian (40.0 per cent, Indo-Trinidadians) and African (37.5 per cent, Afro-Trinidadians) descent.[22] The ancestors of the Afro-Trinidadians were originally from West Africa and the Indo-Trinidadians came mainly from northern and southern India. The estimated rate of alcohol problems in this country is approximately 47 per cent for Indo-Trinidadians and 33 per cent for Afro-Trinidadians.[23] The frequency of genotypes of alcohol metabolism in this population was unknown until recently. A study was undertaken that evaluated associations of ALDH1A1 promoter polymorphisms with alcohol-related phenotypes in this population [24]. In that study, the allele frequencies for ALDH1A1*1, ALDH1A1*2 and ALDH1A1*3 in Afro-Trinidadians were found to be 0.941, 0.035 and 0.024, respectively, and 0.926, 0.074 and 0.000 in Indo-Trinidadians. The present paper reports the sequence of a novel allele identified in that study.
Materials and methods
Subjects
Patients were recruited from admissions to the substance abuse centres at Caura, San Fernando General and Scarborough Regional hospitals. There were no differences in admission or treatment based on ethnicity. Control subjects of both ethnic groups were matched by age, sex and ethnicity to the alcohol-dependent participants, and were recruited through fliers distributed in the communities and also by word of mouth. Whole-blood samples for genotyping were taken from a total of 247 individuals (162 Indo-Trinidadian and 85 Afro-Trinidadian individuals), which included both alcohol dependent (n = 139) and non-alcohol-dependent (n = 108) subjects. Diagnosis of alcohol dependence was assessed using the Semi-Structured Assessment for the Genetics of Alcoholism (SSAGA).[25, 26] The study was carried out in accordance with the Declaration of Helsinki (2000) of the World Medical Association, and approval for the study was obtained from the ethics committees of the participating hospitals (San Fernando General, Caura and Scarborough Regional), the Faculty of Medical Sciences at the University of the West Indies and the Institutional Review Board (IRB) at The Scripps Research Institute. Informed, written consent was obtained from all participants before inclusion into the study.
Genotyping
Genomic DNA was isolated from dried blood spots.[27] The primers, ALDHlA-forward (5'-GCACTGAAAATACACAAGACTGAT-3') and ALDHlA-reverse (5'-AGAATTTGAGGATTG AAAAGAGTC-3'), were designed on the basis of human ALDH1A1 exon 1 and promoter sequences (accession number M31982), and used in polymer-ase chain reaction (PCR) reactions to obtain [?-33P] deoxycytidine triphosphate-radiolabelled fragments. Products were electrophoresed on 6 per cent acrylamide denaturing gels and scored on the basis of the mobility of each resulting PCR fragment.
Results and discussion
PCR analysis, using the ALDH1A1 forward and reverse PCR primers, generated products with corresponding sizes as follows: ALDH1A1*1 = 209 bp; ALDH1A1*2 = 192 bp; ALDH1A1*3 = 212 bp and ALDH1A1*4 = 210 bp (Figure 1). These genetic variations have been previously detected in other populations. The ALDH1A1*2 allele has been identified in diverse ethnic populations, including, Asians, Caucasians and African-Americans, while ALDH1A1*3 has only been discovered thus far in African-Americans, Mission Indians and Afro-Trinidadians.[3, 21, 24]
In our sample, for one individual, an Indo-Trinidadian alcohol-dependent subject, a slightly different allele size was detected on the autoradio-gram; it appeared to be slightly larger than the ALDH1A1*1 allele and smaller than the ALDH1A1*3 allele (Figure 1). By sequencing the PCR product, this unique allele was confirmed to have an A insertion at position -554 relative to the transcriptional start site (M31982). This new allele was named ALDH1A1*4, in accordance with the nomenclature rules, and, therefore, the genotype of the subject would be ALDH1A1*2/*4. The relative positions of the three polymorphisms are shown in Figure 2. [ Table Omitted - see PDF ] [ Table Omitted - see PDF ]
This new ALDH1A1*4 allele was not discovered in any of our Afro-Trinidadian subjects and its frequency in other populations is not known. Therefore, future research in relation to this allele would have to incorporate a wider cross-section of the population of Trinidad and Tobago in order to determine the representative frequency ofthis allele in the respective ethnic groups. In addition, further analyses would be required to determine the expression difference,if any, of the ALDH1A1*4 isozyme.
Establishing the function and kinetics of the ALDH1A1*4 isozyme will also be valuable for the future. Cloning the mRNA and expressing, as well as isolating, the protein for kinetic analysis would lead ultimately to determining the Km. These data will definitely add to the body of knowledge of aldehyde dehydrogenase enzymes and their associated genetic influences. Differences in expression may produce altered acetaldehyde, neurotransmitter and retinoic acid metabolism, and have an impact on the development of alcohol dependence and alcohol-related disorders, as well as on other physiological functions. Conducting similar studies in the populations of origin of our inhabitants (ie India and West Africa) could provide genotypic and phenotypic associations relating to the presence of these polymorphisms, and perhaps serve as predictors of alcohol disorders and other pathologies.
Declarations
Acknowledgements
This research was supported, in part, by the National Institute of Alcoholism and Alcohol Abuse grants AA006420, AA014370, the Stein Endowment Fund (CLE), AA007611 (LGC) and a Dean's Award of the University of the West Indies, Trinidad and Tobago.
Yoshida A, Rzhetsky A, Hsu LC, Chang C: Human dehydrogenase gene family. Eur J Biochem. 1998, 251: 549-557. 10.1046/j.1432-1327.1998.2510549.x.Google Scholar
Vasiliou V, Pappa A, Peterson DR: Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem Biol Interact. 2000, 129: 1-19. 10.1016/S0009-2797(00)00211-8.Google Scholar
Spence JP, Liang T, Eriksson CJP, Taylor RE, et al: Evaluation of aldehyde dehydrogenase 1 promoter polymorphisms identified in human populations. Alcohol Clin Exp Res. 2003, 27: 1389-1394. 10.1097/01.ALC.0000087086.50089.59.Google Scholar
Stewart MJ, Malek K, Xiao Q, Dipple KM, Crabb DW: The novel aldehyde dehydrogenase gene, ALDH5, encodes an active aldehyde dehydrogenase enzyme. Biochem Biophys Res Commun. 1995, 211: 144-151. 10.1006/bbrc.1995.1789.Google Scholar
Ward RJ, McPherson AJ, Chow C, Ealing J, et al: Identification and characterisation of alcohol-induced flushing in Caucasian subjects. Alcohol Alcohol. 1994, 29: 433-438.Google Scholar
Yoshida A, Dave V, Ward RJ, Peters TJ: Cytosolic aldehyde dehydrogenase (ALDH1) variants found in alcohol flushers. Ann Hum Genet. 1989, 53: 1-7. 10.1111/j.1469-1809.1989.tb01116.x.Google Scholar
Yoshida A: Molecular genetics ofhuman aldehyde dehydrogenase. Pharmacogenetics. 1992, 2: 139-147. 10.1097/00008571-199208000-00001.Google Scholar
Yoshida A, Hsu LC, Davé V: Retinal oxidation activity and biological role of human cytosolic aldehyde dehydrogenase. Enzyme. 1992, 46: 239-244.Google Scholar
Lieber CS: Metabolic effects of acetaldehyde. Biochem Soc Trans. 1988, 16: 241-247.Google Scholar
Hatake K, Taniguchi T, Ouchi H, Sakaki N, et al: Possible involvement of kinins in cardiovascular changes after alcohol intake. Pharmacol Biochem Behav. 1990, 35: 437-442. 10.1016/0091-3057(90)90181-G.Google Scholar
Inoue K, Fukunaga M, Kiriyama T, Komura S: Accumulation of acetaldehyde in alcohol-sensitive Japanese: Relation to ethanol and acetaldehyde oxidizing capacity. Alcohol Clin Exp Res. 1984, 8: 319-322. 10.1111/j.1530-0277.1984.tb05519.x.Google Scholar
Harada S, Agarwal DP, Goedde HW: Aldehyde dehydrogenase deficiency as cause of facial flushing reaction to alcohol in Japanese. Lancet. 1981, 2: 982-Google Scholar
Ramchandani VA, Bosron WF, Li TK: Research advances in ethanol metabolism. Pathol Biol. 2001, 49: 676-682. 10.1016/S0369-8114(01)00232-2.Google Scholar
MacKerell AD, Blatter EE, Pietruszko R: Human aldehyde dehydrogenase: Kinetic identification of the isozyme for which biogenic aldehydes and acetaldehyde compete. Alcohol Clin Exp Res. 1986, 10: 266-270. 10.1111/j.1530-0277.1986.tb05087.x.Google Scholar
Sládek NE: Human aldehyde dehydrogenases: Potential, pathological, pharmacological and toxicological impact. J Biochem Mol Toxicol. 2003, 17: 7-23. 10.1002/jbt.10057.Google Scholar
Hsu LC, Yoshida A, Mohandas T: Chromosomal assignment of the genes for human aldehyde dehydrogenase-1 and aldehyde dehydrogenase-2. Am J Hum Genet. 1986, 38: 641-648.Google Scholar
Raghunathan L, Hsu LC, Klisak I, Sparkes RS, et al: Regional localization of the human genes for aldehyde dehydrogenase-1 and aldehyde dehydrogenase-2. Genomics. 1988, 2: 267-269. 10.1016/0888-7543(88)90012-2.Google Scholar
Hsu LC, Chang WC, Yoshida A: Genomic structure of the human cytosolic aldehyde dehydrogenase gene. Genomics. 1989, 5: 857-865. 10.1016/0888-7543(89)90127-4.Google Scholar
Yanagawa Y, Chen JC, Hsu LC, Yoshida A: The transcriptional regulation of human aldehyde dehydrogenase I gene. The structural and functional analysis of the promoter. J Biol Chem. 1995, 270: 17521-17527. 10.1074/jbc.270.29.17521.Google Scholar
Godbout R, Monckton EA: Differential regulation ofthe aldehyde dehydrogenase 1 gene in embryonic chick retina and liver. J Biol Chem. 2001, 276: 32896-32904. 10.1074/jbc.M104372200.Google Scholar
Ehlers CL, Spence JP, Wall TL, Gilder DA, et al: Association of ALDH1 promoter polymorphisms with alcohol-related phenotypes in Southwest California Indians. Alcohol Clin Exp Res. 2004, 28: 1481-1486. 10.1097/01.ALC.0000141821.06062.20.Google Scholar
Central Statistical Office (CSO): Population Census 2000. 2003, CSO; Port of Spain, Trinidad and TobagoGoogle Scholar
National Alcohol and Drug Abuse Prevention Center (NADAPP): The Rapid Assessment Survey. 2000, NADAPP; Port of Spain, Trinidad and TobagoGoogle Scholar
Moore S, Montane-Jaime K, Shafe S, Joseph R, et al: Association of ALDH1 promoter polymorphisms with alcohol-related phenotypes in Trinidad and Tobago. J Stud Alcohol Drugs. 2007, 68: 192-196.Google Scholar
Bucholz KK, Cadoret R, Cloninger CR, Dinwiddie SH, et al: A new, semi-structured psychiatric interview for use in genetic linkage studies: A report on the reliability of the SSAGA. J Stud Alcohol. 1994, 55: 149-158.Google Scholar
Hesselbrock M, Easton C, Bucholz KK, Schuckit M, et al: A validity study of the SSAGA: A comparison with the SCAN. Addiction. 1999, 94: 1361-1370. 10.1046/j.1360-0443.1999.94913618.x.Google Scholar
Truett GE, Heeger P, Mynatt RL, Truett AA, et al: Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques. 2000, 29: 52-54.Google Scholar
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright BioMed Central 2009
Abstract
This paper reports the identification of a novel cytosolic aldehyde dehydrogenase 1 (ALDHIAI) allele. One hundred and sixty-two Indo-Trinidadian and 85 Afro-Trinidadian individuals were genotyped. A novel ALDHIAI allele, ALDHIAI*4, was identified in an Indo-Trinidadian alcoholic with an A inserted at position -554 relative to the translational start site, +1. It was concluded that a wider cross-section of individuals needs to be evaluated in order to determine the representative frequency of the allele, and to see if it is associated with risk of alcoholism.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer