Full text

Turn on search term navigation

© 2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Mokry LE, Ross S, Timpson NJ, Sawcer S, Davey Smith G, Richards JB (2016) Obesity and Multiple Sclerosis: A Mendelian Randomization Study. PLoS Med 13(6): e1002053. doi:10.1371/journal.pmed.1002053

Abstract

Background

Observational studies have reported an association between obesity, as measured by elevated body mass index (BMI), in early adulthood and risk of multiple sclerosis (MS). However, bias potentially introduced by confounding and reverse causation may have influenced these findings. Therefore, we elected to perform Mendelian randomization (MR) analyses to evaluate whether genetically increased BMI is associated with an increased risk of MS.

Methods and Findings

Employing a two-sample MR approach, we used summary statistics from the Genetic Investigation of Anthropometric Traits (GIANT) consortium and the International MS Genetics Consortium (IMSGC), the largest genome-wide association studies for BMI and MS, respectively (GIANT: n = 322,105; IMSGC: n = 14,498 cases and 24,091 controls). Seventy single nucleotide polymorphisms (SNPs) were genome-wide significant (p < 5 x 10-8) for BMI in GIANT (n = 322,105) and were investigated for their association with MS risk in the IMSGC. The effect of each SNP on MS was weighted by its effect on BMI, and estimates were pooled to provide a summary measure for the effect of increased BMI upon risk of MS. Our results suggest that increased BMI influences MS susceptibility, where a 1 standard deviation increase in genetically determined BMI (kg/m2) increased odds of MS by 41% (odds ratio [OR]: 1.41, 95% CI 1.20-1.66, p = 2.7 x 10-5, I2 = 0%, 95% CI 0-29). Sensitivity analyses, including MR-Egger regression, and the weighted median approach provided no evidence of pleiotropic effects. The main study limitations are that, while these sensitivity analyses reduce the possibility that pleiotropy influenced our results, residual pleiotropy is difficult to exclude entirely.

Conclusion

Genetically elevated BMI is associated with risk of MS, providing evidence for a causal role for obesity in MS etiology. While obesity has been associated with many late-life outcomes, these findings suggest an important consequence of childhood and/or early adulthood obesity.

Details

Title
Obesity and Multiple Sclerosis: A Mendelian Randomization Study
Author
Mokry, Lauren E; Ross, Stephanie; Timpson, Nicholas J; Sawcer, Stephen; Smith, George Davey; Richards, J Brent
Section
Research Article
Publication year
2016
Publication date
Jun 2016
Publisher
Public Library of Science
ISSN
15491277
e-ISSN
15491676
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1805469832
Copyright
© 2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Mokry LE, Ross S, Timpson NJ, Sawcer S, Davey Smith G, Richards JB (2016) Obesity and Multiple Sclerosis: A Mendelian Randomization Study. PLoS Med 13(6): e1002053. doi:10.1371/journal.pmed.1002053