Full Text

Turn on search term navigation

© 2016 Shan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The immunoglobulin Fc region is a homodimer consisted of two sets of CH2 and CH3 domains and has been exploited to generate two-arm protein fusions with high expression yields, simplified purification processes and extended serum half-life. However, attempts to generate one-arm fusion proteins with monomeric Fc, with one set of CH2 and CH3 domains, are often plagued with challenges such as weakened binding to FcRn or partial monomer formation. Here, we demonstrate the generation of a stable IgG4 Fc monomer with a unique combination of mutations at the CH3-CH3 interface using rational design combined with in vitro evolution methodologies. In addition to size-exclusion chromatography and analytical ultracentrifugation, we used multi-angle light scattering (MALS) to show that the engineered Fc monomer exhibits excellent monodispersity. Furthermore, crystal structure analysis (PDB ID: 5HVW) reveals monomeric properties supported by disrupted interactions at the CH3-CH3 interface. Monomeric Fc fusions with Fab or scFv achieved FcRn binding and serum half-life comparable to wildtype IgG. These results demonstrate that this monomeric IgG4 Fc is a promising therapeutic platform to extend the serum half-life of proteins in a monovalent format.

Details

Title
Generation and Characterization of an IgG4 Monomeric Fc Platform
Author
Lu, Shan; Colazet, Magali; Rosenthal, Kim L; Xiang-Qing, Yu; Bee, Jared S; Ferguson, Andrew; Damschroder, Melissa M; Herren Wu; William F Dall’Acqua; Tsui, Ping; Oganesyan, Vaheh
First page
e0160345
Section
Research Article
Publication year
2016
Publication date
Aug 2016
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1808041751
Copyright
© 2016 Shan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.