Full Text

Turn on search term navigation

Copyright Nature Publishing Group Aug 2016

Abstract

Oxaliplatin resistance in colorectal cancers (CRC) is a major medical problem, and predictive markers are urgently needed. Recently, miR-625-3p was reported as a promising predictive marker. Herein, we show that miR-625-3p functionally induces oxaliplatin resistance in CRC cells, and identify the signalling networks affected by miR-625-3p. We show that the p38 MAPK activator MAP2K6 is a direct target of miR-625-3p, and, accordingly, is downregulated in non-responder patients of oxaliplatin therapy. miR-625-3p-mediated resistance is reversed by anti-miR-625-3p treatment and ectopic expression of a miR-625-3p insensitive MAP2K6 variant. In addition, reduction of p38 signalling by using siRNAs, chemical inhibitors or expression of a dominant-negative MAP2K6 protein induces resistance to oxaliplatin. Transcriptome, proteome and phosphoproteome profiles confirm inactivation of MAP2K6-p38 signalling as one likely mechanism of oxaliplatin resistance. Our study shows that miR-625-3p induces oxaliplatin resistance by abrogating MAP2K6-p38-regulated apoptosis and cell cycle control networks, and corroborates the predictive power of miR-625-3p.

Details

Title
miR-625-3p regulates oxaliplatin resistance by targeting MAP2K6-p38 signalling in human colorectal adenocarcinoma cells
Author
Rasmussen, Mads Heilskov; Lyskjær, Iben; Jersie-christensen, Rosa Rakownikow; Tarpgaard, Line Schmidt; Primdal-bengtson, Bjarke; Nielsen, Morten Muhlig; Pedersen, Jakob Skou; Hansen, Tine Plato; Hansen, Flemming; Olsen, Jesper Velgaard; Pfeiffer, Per; Ørntoft, Torben Falck; Andersen, Claus Lindbjerg
Pages
12436
Publication year
2016
Publication date
Aug 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1811566359
Copyright
Copyright Nature Publishing Group Aug 2016