Uddin
Comparative study of three digestion methods for elemental analysis in traditional medicine products using atomic absorption spectrometry
http://crossmark.crossref.org/dialog/?doi=10.1186/s40543-016-0085-6&domain=pdf
Web End = http://crossmark.crossref.org/dialog/?doi=10.1186/s40543-016-0085-6&domain=pdf
Web End = ABM Helal Uddin1*, Reem Saadi Khalid1, Mohamed Alaama1, Abdualrahman M. Abdualkader2, Abdulrazak Kasmuri3 and S. A. Abbas4
Abstract
Background: Traditional medicine mainly of herbal origin is widely used all around the world. Heavy metal contamination in such products is frequently reported. Accumulation of heavy metals in the human body leads to various health hazards. Thus, precise determination for such contaminants is required for safety assurance. Sample preparation is a significant step in spectroscopic analysis to achieve reliable and accurate results. Wet digestion methods are basically used for the dissolution of herbal product samples prior to elemental analysis.
Methods: This study has been designed to evaluate the efficiency of three acid digestion methods using different solvents. Five samples were digested with three different acid digestion methods namely method A (a combination of nitric-perchloric acids HNO3HClO4 in a ratio 2:1), method B (only nitric acid HNO3), and method C (a mixture of nitric-hydrochloric acids HNO3HCl in a ratio 1:3), to recommend the most efficient digestion method that gains the highest analyte recovery. The analysis of arsenic (As), cadmium (Cd), lead (Pb), nickel (Ni), zinc (Zn), and iron (Fe) was conducted using various techniques of atomic absorption spectrometry (AAS).
Results: The statistical analysis revealed that method C which represented the combination of nitric-hydrochloric acids HNO3HCl in a ratio 1:3 was the most efficient digestion method for herbal product samples as it had given a significant high recovery (p < 0.05) for all metals compared to method A and method B. Accuracy of the proposed method was evaluated by the analysis of standard reference material (SRM) 1515 Apple Leaves from the National Institute of Standards and Technology (NIST) which presented good recoveries for all metals ranging from 94.5 to 108 %.
Conclusion: Method C provides highest recovery for all the analytes under investigation using AAS in herbal medicine samples.
Keywords: Traditional medicine, Acid digestion, Heavy metals, Nitric acid
Background
Traditional medicine (TM) has a significant contribution to the global health care system (Chan 2003). A significant proportion of the worlds population relies on TM to support their basic health care needs (Jayaraj 2010).Therefore, safety and quality of such products become a major concern (Igweze et al. 2012). Inorganic contaminants such as heavy metals are often present in herbal medicine in various concentration levels (Saeed 2010;Hina et al. 2011; Qing-hua et al. 2001). The presence of
heavy metals in such products is either referred to the ingredients itself or they might arise during the processing part (Sharma and Dubey 2005). Arsenic, cadmium, lead, and nickel are toxic heavy metals that might be present in TM (Uddin et al. 2012). Prolonged exposure to these metals may cause many adverse health effects including cancer (Ray and Ray 2009). Although zinc and iron are essential metals for the human body at trace concentrations yet, they are toxic if present in higher concentrations (Vaikosen and Alade 2011). Consequently, heavy metal content in TM products must be accurately determined. Highly sensitive spectroscopic techniques such as flame (FAAS), graphite furnace (GFAAS), and hydride generation atomic absorption
* Correspondence: mailto:[email protected]
Web End [email protected]
1Analytical and Bio Analytical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia (IIUM), 25200 Kuantan, Pahang, MalaysiaFull list of author information is available at the end of the article
2016 Uddin et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/
Web End =http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Uddin et al. Journal of Analytical Science and Technology (2016) 7:6 Page 2 of 7
spectrometries (HGAAS) are mainly applied for elemental analysis in various samples. Such techniques require aqueous samples. Thus, solid samples need to be regularly converted into solutions using an appropriate dissolution method (Charun and John 2006). Acid digestion methods are generally used for the dissolution of herbal product samples prior to elemental analysis (Duyusen and Grkem 2011). In a spectroscopic elemental analysis sample preparation, acid digestion is an important step of the entire analytical procedure. It has a substantial effect on the recovery of various analyte contents in highly complex matrices such as herb and plant materials. Therefore, it requires further improvement to provide a standard technique that is able to gain accurate results (Nabil 2010). It is essential to assess the digestion efficiency of various digestion methods to achieve the optimal sample preparation method with clearer background (low noise level). Majority of samples are dissolved by various acids prior to spectroscopic elemental analysis. Wet/acid digestion has the benefits of being effective on both organic and inorganic substances as it has the ability to destroy the sample matrix and consequently minimize the interference. However, at this preliminary stage of the analytical processes, there are still some sources of potential errors such as incomplete digestion. Rational selection of the acid combinations used for various sample digestions is very important to achieve the reliable analytical method. Nitric acid is often utilized for this purpose as an oxidant reagent either individually or mixed with other digestion reagents such as acids and/or hydrogen peroxide. The oxidizing capacity, accessibility, and the affordability of nitric acid make it prevalent in this respect (Sastre et al. 2002). This study was aimed to assess the digestion efficiency of three acid digestion methods namely A, B, and C which represented a combination of nitric-perchloric acids HNO3
HClO4 in a ratio of 2:1, only nitric acid HNO3, and a mixture of nitric-hydrochloric acids HNO3HCl in a ratio of 1:3, respectively. Five TM samples of herbal origin were digested with the abovementioned methods. The digestion processes were conducted using the conventional open vessel heating system as it provided the advantage of low equipment cost (Gler and Arzu 2006). The analysis of heavy metals was conducted using various techniques of atomic absorption spectrometry (AAS).
Methods
Traditional medicine samples
Finished products of traditional medicine samples were collected from three different states in the East Coast region of Peninsular Malaysia, namely Pahang, Terengganu, and Kelantan, from various commercial places of the sampling area. Finished herbal products used for medical purposes are herbal preparations that underwent all stages
of production including packaging. They might consist of different herbs/plants, various parts of the same plants, and plant extracts. Five samples of herbal origin in capsule and tablet dosage forms were used to perform the optimization of acid digestion method.
Chemicals and sample preparation
All chemicals and reagents used in this study were of analytical and trace metal grades. Trace metal grades 65 % HNO3, 37 % HCl, and 70 % HClO4 were obtained from Fisher Malaysia. Stock standard solutions for each metal arsenic (As), cadmium (Cd), lead (Pb), nickel (Ni), zinc (Zn), and iron (Fe) with a concentration of 1000 ppm were supplied by Perkin Elmer USA. Deionized water was used throughout the study. Sodium borohydride (NaBH4),
sodium hydroxide (NaOH), L-ascorbic acid (C6H8O6), and
potassium iodide (KI) were from Merck (Germany). A standard reference material (SRM) 1515 Apple Leaves was obtained from the National Institute of Standards and Technology (NIST, USA). All glassware were soaked in 5 % (v/v) HNO3 overnight then rinsed with deionized water and dried using lab dryer FDD-720 prior to use.
Methods of digestion
Samples were accurately weighed (0.5 g each) and placed in a 100-mL PTFE beaker. The samples were subjected to three different acid digestion methods, as will be explained, to identify the most appropriate digestion method to determine the contents of As, Pb, Cd, Ni, Zn, and Fe in TM samples by AAS.
Method A (nitric-perchloric acid digestion 2:1)
To the sample, 5 mL of 65 % HNO3 was added, and then the mixture was boiled gently for 3045 min. After cooling, 2.5 mL of 70 % HClO4 was added, and the mixture was gently boiled until dense white fumes appeared. Later, the mixture was allowed to cool, and 10 mL of deionized water was added followed by further boiling until the fumes were totally released (Hseu 2004).
Method B (nitric acid digestion)
To the sample, 5 mL of 65 % HNO3 was added, and then the mixture was boiled gently over a water bath (90 C) for 12 h or until a clear solution was obtained. Later, 2.5 mL of 65 % HNO3 was added, followed by further heating until total digestion (Zheljazkov and Nielson 1996).
Method C (nitric-hydrochloric acid digestion 1:3)
To the sample, 9 mL of freshly prepared acid mixture of 65 % HNO3 was added, and 37 % HCl was added. Then, the mixture was boiled gently over a water bath (95 C) for 45 h (or until the sample had completely dissolved) (Ang and Lee 2005).
Uddin et al. Journal of Analytical Science and Technology (2016) 7:6 Page 3 of 7
Table 1 Instrumental parameters for FAAS of Zn and Fe analysis; GFAAS for Cd, Pb, and Ni analysis; and HGAAS for As analysis
Instrumental parameters FAAS Zn/Fe GFAAS Cd/Pb/Ni HGAAS As Wavelength (nm) 213.9/248.3 228.8/283.3/232.0 193.7
Slit (nm) 0.7/0.2 0.7/0.7/0.2 0.7 Lamp type HCL/HCL HCL/EDL/HCL EDL Atomization temp. (C) 2300/2300 1400/1500/2300 900
During the digestion procedures, the inner walls of the beakers were washed with 2 mL of deionized water to prevent the loss of the sample, and at the last part of the digestion processes, the samples were filtered with Whatman 42 (2.5-m particle retention) filter paper. Then, a sufficient amount of deionized water was added to make the final volume up to 50 mL.
Analytical procedure
Heavy metals were measured using a Perkin Elmer atomic absorption spectrometer (AAnalyst 800). In this study, three different AAS techniques were used for elemental measurements in certified and real samples of finished herbal products. The instrument is designed to analyze the sample using three different atomization techniques: FAAS for Zn and Fe; GFAAS for Cd, Pb, and Ni; and HGAAS for As. In FAAS, the aqueous sample is
aspirated in the flame atomizer by the nebulizer to measure the analyte concentration at a parts per million (ppm) concentration level with good precision. Pb, Cd, and Ni were analyzed by GFAAS. It is an efficient measurement system for a number of elements at relatively low levels of concentration with the use of several matrix modifiers (Shah et al. 2009). In GFAAS, the instrument is equipped with a transverse heated graphite atomizer (THGA) which provides uniform temperature distribution across the entire length of the graphite tube atomizer to overcome the potential chemical interference effects; also, the instrument offers an auto-sampler system and provides an accurate background correction (Zeeman correction). Arsenic was detected by the HGAAS method which is based on the reaction of NaBH4 with acidified sample results in total separation of the analyte as hydride from the matrix before measurement which reduces the matrix interferences. In this technique, standards and samples were pre-reduced from an arsenate pentavalent (V) to an arsenite trivalent (III) state. This was achieved by adding a reducing solution containing 5 % (w/v) KI, 5 % (w/v) ascorbic acid, and 10 % HCl. The treated samples and standards were allowed to stand at room temperature for approximately 40 min prior to analysis. Table 1 shows the instrumental parameters of FAAS, GFAAS, and HGAAS for all metals.
Table 2 Concentration of different metals (g/g) (SD) in traditional medicine samples (TM 1TM 5) using different acid digestion methods Sample ID As Cd Pb Ni Zn FeTM 1
A 0.25 (0.02)a 0.25 (0.004) 4.177 (0.09) 6.26 (0.07) 51.7 (0.1) 219 (0.7) B 0.24 (0.02) 0.19 (0.009) 4.16 (0.04) 6.30 (0.02) 46.9 (0.3) 154 (0.7) C 0.3 (0.04) 0.33 (0.004) 4.66 (0.02) 7.02 (0.9) 56.8 (1.3) 306 (1.6) TM 2A 0.25 (0.03) 0.19 (0.004) 2.545 (0.1) 4.54 (0.05) 37.6 (0.02) 213 (1.2) B 0.27 (0.02) 0.15 (0.02) 2.41 (0.09) 4.26 (0.02) 36.2 (0.01) 100 (0.7) C 0.33 (0.03) 0.26 (0.002) 2.95 (0.01) 4.70 (0.16) 41.5 (0.2) 303 (1.1) TM 3A 0.29 (0.04) 0.12 (0.001) 4.94 (0.04) 4.60 (0.01) 11.9 (0.1) 114 (0.5) B 0.73 (0.04) 0.11 (0.001) 4.94 (0.04) 4.64 (0.01) 11.4 (0.1) 93 (1.9) C 1.2 (0.06) 0.14 (0.004) 5.39 (0.05) 4.89 (0.02) 14.3 (0.1) 168 (0.5) TM 4A 1.2 (0.06) 0.15 (0.001) 2.48 (0.3) 4.40 (0.1) 20.4 (0.1) 227 (2.0) B 0.85 (0.01) 0.12 (0.001) 2.32 (0.07) 4.28 (0.07) 19.5 (0.3) 198 (1.7) C 1.9 (0.12) 0.24 (0.001) 2.93 (0.03) 4.80 (0.12) 23.1 (0.3) 688 (2) TM 5A 1.3 (0.06) 0.18 (0.03) 1.95 (0.09) 5.32 (0.09) 44.2 (0.3) 108 (0.1) B 0.88 (0.03) 0.18 (0.03) 1.88 (0.10) 5.00 (0.03) 42.3 (0.3) 92 (0.7) C 1.6 (0.01) 0.25 (0.003) 2.50 (0.3) 5.80 (0.29) 52.3 (1) 127 (0.5)
TM traditional medicine, A nitric-perchloric acid, B nitric acid, C nitric-hydrochloric acid
aResults presented as the mean of triplicates (SD)
Uddin et al. Journal of Analytical Science and Technology (2016) 7:6 Page 4 of 7
Fig. 1 Concentration of As, Cd, and Pb (g/g) in traditional medicine samples using methods A, B, and C
Uddin et al. Journal of Analytical Science and Technology (2016) 7:6 Page 5 of 7
Fig. 2 Concentration of Fe, Ni, and Zn (g/g) in traditional medicine samples using methods A, B, and C
Uddin et al. Journal of Analytical Science and Technology (2016) 7:6 Page 6 of 7
Analysis of the standard reference material
The accuracy of the optimize method was verified by the analysis of SRM 1515 Apple Leaves.
Statistical analysis
Results were expressed as the mean of triplicates standard deviation (SD). The data were analyzed by one-way analysis of variance (ANOVA) followed by Dunnetts post hoc test for multiple comparisons using SPSS.
Results and discussion
The results obtained from all experiments indicated that method C which represented the mixture of HNO3HCl had given the highest analyte recovery for
As, Cd, Pb, Ni, Zn, and Fe in TM samples. Method A using the HNO3HClO4 mixture and method B using
HNO3 only gave convergent recoveries for all elements. The mean values of As, Cd, Pb, Ni, Zn, and Fe with standard deviation for each method are shown in Table 2. The differences were found statistically significant with a p value <0.05 for all TM samples digested with method C for all elements (Figs. 1 and 2).
The accuracy of the proposed method was checked by the analysis of SRM 1515 Apple Leaves obtained from NIST. The results indicate good agreement between measured and certified values, and the recovery percentage for all metals was in the range 94.5108 % within the specification limit of AOAC guidelines which verifies the accuracy of the method. Table 3 shows the results for metals content in SRM.
All the TM samples were contained heavy metals at different concentrations. Highest analyte recoveries for all TM samples were gained using method C that ranged0.31.9; 0.140.33; 2.54.66; 4.77.02; 14.356.8; and 127688 g/g for As, Cd, Pb, Ni, Zn, and Fe, respectively. Based on the fact that TM are highly consumed worldwide, a significant concern from many health institutes in different countries had imposed permissible limits of heavy metals in raw/finished herbal product. In Canada, the maximum limits for As, Pb, and Cd are 5, 10, and 0.3 ppm, respectively; in India, 10, 10, and0.3 ppm for As, Pb, and Cd, respectively (Gupta et al.
2010). It is equitable to assume that heavy metal intake through such products has significant influence on humans health. Therefore, an adequate method for their determination is of importance.
Previous studies suggested various methods for digesting different samples for metal analysis (Nabil 2010). Aqua regia has been proposed as the best digestion method for samples with low carbonate or organic matter contents such as sediments and agricultural soils (Sastre et al. 2002). Another study reported that there was no significant differences between the digesting capacity of HNO3 acid and HNO3HClO4 acid mixture in the measurement of phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) contents of barley (Hordeum vulgare L. cv. Minorimugi) and rice (Oryza sativa L. cv. Akihikari) seedlings (Shaibur, et al. 2010). Nitric acid digestion was proposed as the most efficient method for recovering Cd, Mn, and Ni in the majority of composts samples (Hseu 2004). Another study recommended the combination of HNO3HCl in a ratio of 1:2 as the most efficient digestion method which yielded the highest recovery of Pb, Zn, and Fe in canned sardines samples (Fong et al. 2006). However, TM samples have complex matrices as they are made from either one herb or a mixture of herbs from any part of a plant such as leaves, roots, seeds, and flowers that might have different chemical properties. The digestion capacity of hydrochloric-nitric acids HNO3HCl in a ratio of 1:3 mixture had proven to be the best acid combination suitable for the decomposition of TM samples due to the ability of such mixture to release the metal ions from such complex matrices of herbal materials and subsequently to minimize the noise level during the detection procedure.
Conclusions
Sample preparation is a crucial step in spectroscopic elemental analyses as it can considerably affect the accuracy of results. Significant differences between the digesting capacities of different methods were identified. The digestion capacity using a mixture of hydrochloric-nitric acids HNO3HCl in a ratio of 1:3 was the most efficient method in terms of the recovery of As, Cd, Pb, Ni, Zn, and Fe in herbal medicine samples.
AbbreviationsAAS: atomic absorption spectrometer; AOAC: American Organization of Analytical Chemistry; ANOVA: analysis of variance; As: arsenic; Cd: cadmium; EDL: electrodeless discharge lamp; FAAS: flame atomic absorption spectrometer; Fe: iron; GFAAS: graphite furnace atomic absorption spectrometer; HCL: hollow-cathode lamp; HCl: hydrochloric acid;
HClO4: perchloric acid; HNO3: nitric acid; KI: potassium iodide; NaBH4: sodium borohydride; NaOH: sodium hydroxide; HGAAS: hydride generation atomic absorption spectrometer; Mg(NO)3: magnesium nitrate; NaOH: sodium hydroxide; Ni: nickel; NIST: National Institute of Standards and Technology; Pb: lead; SD: standard deviation; SPSS: Statistical Package for Social Sciences; SRM: standard reference material; Zn: zinc.
Table 3 Recovery percentages and concentrations of As, Cd, Pb, Ni, Zn, and Fe in SRM (1515)
Analyte SRM conc.
g/g (SD)
Measured conc.
g/g (SD)
Recovery (%)
As 0.038 (0.007) 0.039 (0.002) 102 Cd 0.013 (0.002) 0.012 (0.009) 96 Pb 0.47 (0.02) 0.5 (0.02) 106 Ni 0.91 (0.12) 0.86 (0.004) 94.5 Zn 12.5 (0.3) 13.5 (0.3) 108 Fe 83 (5) 83.3 (4) 100
Uddin et al. Journal of Analytical Science and Technology (2016) 7:6 Page 7 of 7
Competing interestsThe authors declare that they have no competing interests.
Authors' contributionRSK, ABM HU, MA has conducted the experimental part and manuscript preparation. AA, SAA has contributed for the statistical analysis and AK and SAA has edited the paper for technical improvement.
AcknowledgementsThe authors would like to express their gratitude to all the academic and technical staff of the Department of Pharmaceutical Chemistry, Faculty of Pharmacy, IIUM, for their support. They are also thankful to the Research Management Centre (RMC), IIUM, and Ministry of Higher Education (MOHE), Malaysia, for funding this study.
Author details
1Analytical and Bio Analytical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia (IIUM), 25200 Kuantan, Pahang, Malaysia. 2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, International Islamic University Malaysia (IIUM), 25200 Kuantan, Pahang, Malaysia. 3Department of Basic medical Science, Faculty of Pharmacy, International Islamic University Malaysia (IIUM), 25200 Kuantan, Pahang, Malaysia. 4Taylors University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
Received: 2 October 2015 Accepted: 20 January 2016
ReferencesAng H, Lee K. Analysis of mercury in Malaysian herbal preparations: a peer-review. Biomed Sci. 2005;4:316.
Chan K. Some aspects of toxic contaminants in herbal medicines. Chemosphere.2003;52:136171.
Charun Y, John GF. Comparative study of acid-extractable and total digestion methods for the determination of inorganic elements in peat material by inductively coupled plasma-optical emission spectrometry. Anal Chim Acta. 2006;557:296303.
Duyusen EG, Grkem A. Comparison of acid digestion techniques to determine heavy metals in sediment and soil samples. GU J Sci. 2011;24:2934.
Fong SS, Kanakaraaju D, Ling SC. Evaluation of acid digestion with different solvent combination for the determination of iron, zinc and lead in canned sardines. M J Chem. 2006;8:105.
Gler S, Arzu NU. The effect of acid digestion on the recoveries of trace elements: recommended policies for the elimination of losses. Turk J Chem. 2006;30:74553.
Gupta S, Pandotra P, Gupta AP, Dhar JK, Sharma G, Ram G, et al. Volatile (As and Hg) and non-volatile (Pb and Cd) toxic heavy metals analysis in rhizome of Zingiber officinale collected from different locations of North Western Himalayas by atomic absorption spectroscopy. Food Chem Toxicol. 2010;48(10):296671.
Hina B, Rizwani GH, Naseem S. Determination of toxic metals in some herbal drugs through atomic absorption spectroscopy. Pak J Pharm Sci. 2011;24:3538.
Hseu ZY. Evaluating heavy metal contents in nine composts using four digestion methods. Bioresource Technol. 2004;5:539.
Igweze ZN, Orisakwe OE, Obianime A. Nigerian herbal remedies and heavy metals: violation of standard recommended guidelines. Asian Pac J Trop. 2012;2:142330.
Jayaraj P. Regulation of traditional and complementary medicinal products inMalaysia. Int J Green Pharm. 2010;4:104.
Nabil RB. Sample preparation for flame atomic absorption spectroscopy: an overview. Rasayan J Chem. 2010;4:4955.
Qing-hua Y, Qing W, Xiao-qin M. Determination of major and trace elements in six herbal drugs for relieving heat and toxicity by ICP-AES with microwave digestion. J Saudi Chem Soc. 2001;16:28790.
Ray SA, Ray MK. Bioremediation of heavy metal toxicity-with special reference to chromium. Ameen J Med Sci. 2009;2:5763.
Saeed M. Analysis of toxic heavy metals in branded Pakistani herbal products.J Chem Soc Pak. 2010;32(471):475.
Sastre J, Sahuquillo A, Vidal M, Rauret G. Determination of Cd, Cu, Pb and Zn in environmental samples microwave-assisted total digestion versus aqua regia and nitric acid extraction. Anal Chim Acta. 2002;462:5972.
Shaibur MR, Shamim AHM, Imamul Huq SM, Kawai S. Comparison of digesting capacity of nitric acid and nitric acid-perchloric acid mixture and the effect of lanthanum chloride on potassium measurement. Nat Sci. 2010;8:15762.
Shah AQ, Kazi TG, Arain MB, Jamali MK, Afridi HI, Jalbani N, et al. Comparison of electrothermal and hydride generation atomic absorption spectrometry for the determination of total arsenic in broiler chicken. Food Chem. 2009;113:13515.
Sharma P, Dubey RS. Lead toxicity in plants. Braz J Plant Physiol. 2005;17:3552. Uddin ABMH, Khalid RS, Abba S. Determination of heavy metal concentration of different traditional medicine formulations available at the East Coast Region of Malaysia. Afr J Pharm Pharacol. 2012;6:148791.
Vaikosen EN, Alade GO. Evaluation of pharmacognostical parameters and heavy metals in some locally manufactured herbal drugs. J Chem Pharm Res. 2011;3:8897.
Zheljazkov VD, Nielson NE. Effect of heavy metals on peppermint and cornmint.Plant Soil. 1996;178:5966.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
The Author(s) 2016
Abstract
Background
Traditional medicine mainly of herbal origin is widely used all around the world. Heavy metal contamination in such products is frequently reported. Accumulation of heavy metals in the human body leads to various health hazards. Thus, precise determination for such contaminants is required for safety assurance. Sample preparation is a significant step in spectroscopic analysis to achieve reliable and accurate results. Wet digestion methods are basically used for the dissolution of herbal product samples prior to elemental analysis.
Methods
This study has been designed to evaluate the efficiency of three acid digestion methods using different solvents. Five samples were digested with three different acid digestion methods namely method A (a combination of nitric-perchloric acids HNO3-HClO4 in a ratio 2:1), method B (only nitric acid HNO3), and method C (a mixture of nitric-hydrochloric acids HNO3-HCl in a ratio 1:3), to recommend the most efficient digestion method that gains the highest analyte recovery. The analysis of arsenic (As), cadmium (Cd), lead (Pb), nickel (Ni), zinc (Zn), and iron (Fe) was conducted using various techniques of atomic absorption spectrometry (AAS).
Results
The statistical analysis revealed that method C which represented the combination of nitric-hydrochloric acids HNO3-HCl in a ratio 1:3 was the most efficient digestion method for herbal product samples as it had given a significant high recovery (p<0.05) for all metals compared to method A and method B. Accuracy of the proposed method was evaluated by the analysis of standard reference material (SRM) 1515 Apple Leaves from the National Institute of Standards and Technology (NIST) which presented good recoveries for all metals ranging from 94.5 to 108 %.
Conclusion
Method C provides highest recovery for all the analytes under investigation using AAS in herbal medicine samples.
[Figure not available: see fulltext.]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer