Full text

Turn on search term navigation

Copyright Nature Publishing Group Aug 2016

Abstract

Patients with bipolar disorder (BD) have a high prevalence of comorbid medical illness. However, the mechanisms underlying these comorbidities with BD are not well known. Certain genetic variants may have pleiotropic effects, increasing the risk of BD and other medical illnesses simultaneously. In this study, we evaluated the association of BD-susceptibility genetic variants with various medical conditions that tend to co-exist with BD, using electronic health records (EHR) data linked to genome-wide single-nucleotide polymorphism (SNP) data. Data from 7316 Caucasian subjects were used to test the association of 19 EHR-derived phenotypes with 34 SNPs that were previously reported to be associated with BD. After Bonferroni multiple testing correction, P<7.7 × 10 -5 was considered statistically significant. The top association findings suggested that the BD risk alleles at SNP rs4765913 in CACNA1C gene and rs7042161 in SVEP1 may be associated with increased risk of 'cardiac dysrhythmias' (odds ratio (OR)=1.1, P=3.4 × 10 -3 ) and 'essential hypertension' (OR=1.1, P=3.5 × 10-3 ), respectively. Although these associations are not statistically significant after multiple testing correction, both genes have been previously implicated with cardiovascular phenotypes. Moreover, we present additional evidence supporting these associations, particularly the association of the SVEP1 SNP with hypertension. This study shows the potential for EHR-based analyses of large cohorts to discover pleiotropic effects contributing to complex psychiatric traits and commonly co-occurring medical conditions.

Details

Title
Leveraging electronic health records to study pleiotropic effects on bipolar disorder and medical comorbidities
Author
Prieto, M L; Ryu, E; Jenkins, G D; Batzler, A; Nassan, M M; Cuellar-barboza, A B; Pathak, J; Mcelroy, S L; Frye, M A; Biernacka, J M
Pages
e870
Publication year
2016
Publication date
Aug 2016
Publisher
Nature Publishing Group
e-ISSN
21583188
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1811912653
Copyright
Copyright Nature Publishing Group Aug 2016