Full Text

Turn on search term navigation

Copyright Nature Publishing Group Aug 2016

Abstract

Among the frustrated magnetic materials, spin-ice stands out as a particularly interesting system. Residual entropy, freezing and glassiness, Kasteleyn transitions and fractionalization of excitations in three dimensions all stem from a simple classical Hamiltonian. But is the usual spin-ice Hamiltonian a correct description of the experimental systems? Here we address this issue by measuring magnetic susceptibility in the two most studied spin-ice compounds, Dy2 Ti2 O7 and Ho2 Ti2 O7 , using a vector magnet. Using these results, and guided by a theoretical analysis of possible distortions to the pyrochlore lattice, we construct an effective Hamiltonian and explore it using Monte Carlo simulations. We show how this Hamiltonian reproduces the experimental results, including the formation of a phase of intermediate polarization, and gives important information about the possible ground state of real spin-ice systems. Our work suggests an unusual situation in which distortions might contribute to the preservation rather than relief of the effects of frustration.

Details

Title
Intermediate magnetization state and competing orders in Dy2Ti2O7 and Ho2Ti2O7
Author
Borzi, R A; Gómez Albarracín, F A; Rosales, H D; Rossini, G L; Steppke, A; Prabhakaran, D; Mackenzie, A P; Cabra, D C; Grigera, S A
Pages
12592
Publication year
2016
Publication date
Aug 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1813932809
Copyright
Copyright Nature Publishing Group Aug 2016