Full text

Turn on search term navigation

Copyright © 2016 Douglas R. Anderson and Christopher C. Tisdell. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We investigate two types of first-order, two-point boundary value problems (BVPs). Firstly, we study BVPs that involve nonlinear difference equations (the "discrete" BVP); and secondly, we study BVPs involving nonlinear ordinary differential equations (the "continuous" BVP). We formulate some sufficient conditions under which the discrete BVP will admit solutions. For this, our choice of methods involves a monotone iterative technique and the method of successive approximations (a.k.a. Picard iterations) in the absence of Lipschitz conditions. Our existence results for the discrete BVP are of a constructive nature and are of independent interest in their own right. We then turn our attention to applying our existence results for the discrete BVP to the continuous BVP. We form new existence results for solutions to the continuous BVP with our methods involving linear interpolation of the data from the discrete BVP, combined with a priori bounds and the convergence Arzela-Ascoli theorem. Thus, our use of discrete BVPs to yield results for the continuous BVP may be considered as a discrete approach to continuous BVPs.

Details

Title
Discrete Approaches to Continuous Boundary Value Problems: Existence and Convergence of Solutions
Author
Anderson, Douglas R; Tisdell, Christopher C
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
10853375
e-ISSN
16870409
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1816602464
Copyright
Copyright © 2016 Douglas R. Anderson and Christopher C. Tisdell. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.