It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper introduces two formal equivalent definitions of the Cobb-Douglas function for a continuum model based on a generalization of the Constant Elasticity of Substitution (CES) function for a continuum under not necessarily constant returns to scale and based on principles of product calculus. New properties are developed, and to illustrate the potential of using the product integral and its functional derivative, it is shown how the profit maximization problem of a single competitive firm using a continuum of factors of production can be solved in a manner that is completely analogous to the one used in the discrete case.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer