Full Text

Turn on search term navigation

© 2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ticks. PLoS Pathog 12(8): e1005791. doi:10.1371/journal.ppat.1005791

Abstract

Lyme disease, caused by Borrelia burgdorferi, is a vector-borne illness that requires the bacteria to adapt to distinctly different environments in its tick vector and various mammalian hosts. Effective colonization (acquisition phase) of a tick requires the bacteria to adapt to tick midgut physiology. Successful transmission (transmission phase) to a mammal requires the bacteria to sense and respond to the midgut environmental cues and up-regulate key virulence factors before transmission to a new host. Data presented here suggest that one environmental signal that appears to affect both phases of the infective cycle is osmolarity. While constant in the blood, interstitial fluid and tissue of a mammalian host (300 mOsm), osmolarity fluctuates in the midgut of feeding Ixodes scapularis. Measured osmolarity of the blood meal isolated from the midgut of a feeding tick fluctuates from an initial osmolarity of 600 mOsm to blood-like osmolarity of 300 mOsm. After feeding, the midgut osmolarity rebounded to 600 mOsm. Remarkably, these changes affect the two independent regulatory networks that promote acquisition (Hk1-Rrp1) and transmission (Rrp2-RpoN-RpoS) of B. burgdorferi. Increased osmolarity affected morphology and motility of wild-type strains, and lysed Hk1 and Rrp1 mutant strains. At low osmolarity, Borrelia cells express increased levels of RpoN-RpoS-dependent virulence factors (OspC, DbpA) required for the mammalian infection. Our results strongly suggest that osmolarity is an important part of the recognized signals that allow the bacteria to adjust gene expression during the acquisition and transmission phases of the infective cycle of B. burgdorferi.

Details

Title
Two Different Virulence-Related Regulatory Pathways in Borrelia burgdorferi Are Directly Affected by Osmotic Fluxes in the Blood Meal of Feeding Ixodes Ticks
Author
Bontemps-Gallo, Sébastien; Lawrence, Kevin; Gherardini, Frank C
Section
Research Article
Publication year
2016
Publication date
Aug 2016
Publisher
Public Library of Science
ISSN
15537366
e-ISSN
15537374
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1820282593
Copyright
© 2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Ticks. PLoS Pathog 12(8): e1005791. doi:10.1371/journal.ppat.1005791