ARTICLE
Received 24 Apr 2016 | Accepted 22 Aug 2016 | Published 5 Oct 2016
Polarimetric imaging is widely used in applications from material analysis to biomedical diagnostics, vision and astronomy. The degree of circular polarization, or light ellipticity, is associated with the S3 Stokes parameter which is dened as the difference in the intensities of the left- and right-circularly polarized components of light. Traditional way of determining this parameter relies on using several external optical elements, such as polarizers and wave plates, along with conventional photodetectors, and performing at least two measurements to distinguish left- and right-circularly polarized light components. Here we theoretically propose and experimentally demonstrate a thermopile photodetector element that provides bipolar voltage output directly proportional to the S3 Stokes parameter of the incident light.
DOI: 10.1038/ncomms12994 OPEN
Thermopile detector of light ellipticity
Feng Lu1, Jongwon Lee1,w, Aiting Jiang1, Seungyong Jung1 & Mikhail A. Belkin1
1 Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, USA.w Present address: School of Electrical and Computer Engineering, Ulsan, National Institute of Science and Technology (UNIST), Ulsan 44919, South Korea.
Correspondence and requests for materials should be addressed to M.A.B. (email: mailto:[email protected]
Web End [email protected] ).
NATURE COMMUNICATIONS | 7:12994 | DOI: 10.1038/ncomms12994 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications 1
ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12994
Measurements of light ellipticity or the degree of circular polarization of an electromagnetic wave are highly important for the characterization of chiral
molecules1,2, imaging of biological tissues3, identifying bio-organics4,5, studying cosmic microwave background radiation6,7, enhancing vision in turbid media8,9 as well as for performing quantum cryptography and communication experiments1012. Light ellipticity is quantied by the Stokes parameter S3 IRCP ILCP, where ILCP and IRCP are the
intensities of the left-circularly polarized (LCP) and right-circularly polarized (RCP) light waves in which the electric eld moves along a helical trajectory, either clockwise or counterclockwise. Distinguishing the two circular polarizations with conventional photodetectors directly is inherently difcult. Traditionally, external optical components, such as polarizers and wave plates, are used to lter LCP or RCP light for detection13,14. Intensive investigations have been focused recently on developing integrated solutions for detecting light circular polarization. Detectors based on chiral materials, optical antennas/ metamaterials or nonlinear plasmonic structures were proposed and demonstrated with different sensitivity to LCP and RCP light1519. However, all these detectors are still sensitive to linearly polarized light, that is, they have non-zero output when S3 0, and thus cannot be used to measure the S3 Stokes
parameter directly. A number of integrated on-chip photonic elements, such as polarizers20,21 or beam splitters2227, have also been proposed to separate LCP and RCP light components.
Monolithic detectors with the output directly proportional to the S3 Stokes parameter would be the most compact and desirable solution for detecting and characterizing light ellipticity, especially if one thinks of polarimetric focal-plane-array imaging, for example, for identication of bio-organics4,5, astronomical observations6,7, or vision in turbid media8,9. Recently, the rst monolithic photodetectors with voltage response directly proportional to the light ellipticity were reported in mid-infrared and terahertz spectral ranges28,29 based on spin-galvanic and circular photogalvanic effect in semiconductors30,31. However, spin-galvanic effect in semiconductors is intrinsically small30,31 and thus these detectors require kW cm 2-level optical intensity to produce detectable response.
Here we theoretically propose and experimentally demonstrate a thermopile photodetector element with electromagnetically engineered optical antennas that translate the degree of circular polarization of light into the d.c. voltage directly proportional to the S3 Stokes parameter of the incident radiation. Our detector
operation is based on the concept of antenna-coupled thermo-piles which are constructed by placing the hot junction of a thermocouple at the centre of an optical antenna and have previously demonstrated sensitivity to linear or mixed light polarization3235. We demonstrate our detector operation at 79 mm wavelength range; however, similar to other thermopile detectors, our detectors can be tailored for operation at any wavelength of interest from visible light to radio frequencies. They provide orders of magnitude higher sensitivity, compared with the photogalvanic photodetectors28,29 and can be manufactured into focal-plane-arrays. To the best of our knowledge our devices are the only photodetectors, other than that based on photogalvanic effect, that are sensitive exclusively to the degree of circular polarization of light.
ResultsThermopile antenna design. Consider two identical rod antennas positioned at 45 to the y axis on a planar substrate as shown in Fig. 1a. The dimensions of the antennas are chosen so that they have a resonance at the target wavelength of 7.5 mm.
When the antenna gap is large (g44l), x- and y-polarized light will excite antisymmetric and symmetric plasmon modes, respectively, as shown in Fig. 1a, with resonances at exactly the same frequencies. However, as the antenna gap decreases to the subwavelength scale, a frequency gap emerges between the resonant positions of the new symmetric and antisymmetric eigenmodes of the dimer antenna36. The computed resonance positions of the two modes for the antenna gap of 100 nm are shown in Fig. 1b. Under LCP or RCP illumination, the symmetric and antisymmetric charge oscillations in the dimer antenna will have a relative phase delay given by the sum of the phase delay between Ex and Ey components of the optical eld that excite them (p/2 for LCP and RCP light) and the phase delay due to different detuning of symmetric and antisymmetric antenna resonances relative to the excitation light frequency. We adjusted the antenna gap size so that the latter effect produces a phase delay of Bp/2 between symmetric and antisymmetric charge oscillations for the excitation light wavelength of lE7.5 mm. The total phase difference between the symmetric and antisymmetric charge oscillations induced by circularly polarized light in the dimer antenna is then either 0 or p , depending on whether we use LCP or RCP illumination. The induced optical currents of the symmetric and antisymmetric modes then add constructively in one rod antenna in the dimer and destructively in the other. As a
a
b
c
Symmetric mode
Ex,y
Ey Ex
T
9
Light absorption (a.u.)
g
+
+
Ey
6
Antisymmetric mode
+
3
+
Ex
5 6 7 8 9 10
Wavelength (m)
Figure 1 | Dimer antenna for circularly polarized light discrimination. (a) Basic dimer antenna geometry and associated symmetric (top) and antisymmetric (bottom) plasmon modes. The two rod antennas are positioned orthogonally to each other and are separated by a small gap g.(b) COMSOL-simulated absorbance of the dimer antenna for a for x- and y-polarized light illumination (red and blue lines, respectively) as a function of the light wavelength l. Solid lines are for g 100 nmool, dashed lines are for g44l. (c) COMSOL simulation of the temperature distribution in the dimer antenna
under RCP illumination at the resonant wavelength l 7.5 mm. For simplicity of calculations, the antenna is assumed to be positioned in air and dT is given in
arbitrary units. Scale bar, 1 mm. (The temperature distribution in the dimer antenna under LCP illumination is the mirror image of that shown in c.)
2 NATURE COMMUNICATIONS | 7:12994 | DOI: 10.1038/ncomms12994 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications
NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12994 ARTICLE
a
b
Vout
a
SiO2
Au
A B
B
A
b
c
A
B
15
Responsivity (mV W1 )
T (mK)
Metal 1
Metal 2
300
0
10
5
150
B
A
0
5
Figure 2 | Antenna-coupled thermopile for light ellipticity detection. (a) Dimer-antenna-based thermocouple to discriminate between LCP and RCP light. (b) The design of the antenna-coupled thermopile element for the detection of S3 Stokes parameter of light.
6 7 8 9
Wavelength (m)
Figure 3 | Thermopile element used for experimental measurements. (a) Scanning electron microscopy image of the fabricated thermopile element, consisting of V-shaped antennas (made in Au), C-shaped feed lines (Au), thermocouple junctions (Au Ni) and readout electrodes
(top-left corner, Au). Scale bars, 5 and 1 mm (zoom-in). (b) COMSOL simulation of the temperature distribution in the antenna structure at the end of a 1-ms-long RCP pulse at l 7.5 mm and 40 Wcm 2 intensity. The
antenna structure is simulated to be on top of a l/4 thick SiO2 spacer on the gold substrate. Scale bar, 1 mm. (c) Calculated responsivity of the thermopile in a for RCP light based on thermal simulations performed at various input light wavelengths. The value was deduced from the simulated temperature at A and B thermocouple junctions marked by the red lines in b.
result, the LCP (RCP) light produces heating only in the left (right) rod antenna as shown in Fig. 1c. If a thermocouple is now placed in thermal contact with the antennas, as shown schematically in Fig. 2a, the temperature difference between the thermocouple junctions will be translated into the d.c. voltage through Seebeck effect37,38, which would change sign for LCP and RCP light illumination.
The voltage output of the antenna-coupled thermopile structure shown in Fig. 2a is still sensitive to linearly polarized light (for example, when incident light is polarized along one of the rod antennas). To build a thermopile element sensitive exclusively to the degree of circular polarization of light, we arrange four dimer antennas in a two-dimensional (2D) conguration that possesses D4 symmetry (that is, the mirror symmetry and the four-fold rotational symmetry), see an example in Fig. 2b. To prove this point, we note that the temperature difference across a thermocouple number N (N 14) in Fig. 2b
is given as
DTNTN A
TN B
X
i;jx;y
Re a NijEiE j
; 1
where TN(A) and TN(B) are the temperatures of the A and B junctions of the thermocouple N, cf. Fig. 2b, Ei and Ej are the components of the normally incident optical eld (i, j x or y)
and a Nij is the complex second-rank tensor relating antenna heating to the optical eld components. The values of individual elements in a Nij are dependent on the antenna geometry as well as on the thermal and optical properties of the antenna materials, see Supplementary Note 1. The electromotive force (emf) voltage produced by all the four thermocouples in Fig. 2b is given as emf DS DT1 DT2 DT3 DT4
, where DS is the difference
in the Seebeck coefcients of the two materials forming the thermocouple37,38. Using equation (1) and the D4 symmetry of the antenna structure, we can show the emf voltage is given as
emf 2DS Ima 1 xy a 1 yxjExE y EyE xR S3 2
where R2DS Ima 1 xy a 1 yx=e0c is the detector responsivity
(V W 1) and S3 IRCP ILCPe0cjExE y EyE x is the S3
Stokes parameter of the incident light39, see Supplementary Note 1 for details of the derivation. The dimer antenna shown in Fig. 1 and discussed above is one of the simplest plasmonic antenna designs with Ima 1 xy a 1 yx 6 0. We note that our
derivations of equation (2) used only general symmetry considerations so any planar antenna-coupled thermopile with the D4 symmetry will provide voltage output given by equation (2).
Experimental implementation. For the proof-of-concept experimental demonstration, we have fabricated antenna-coupled thermopile element shown in Fig. 3a. Fabrication details are given in the Methods section. The overall symmetry of the structure in Fig. 3a is similar to that in Fig. 2b and the operating principle is the same. Modications compared with Fig. 2b are introduced to compensate for distortions in the antenna plasmonic resonances introduced by the presence of thermocouple elements and the substrate. The dimer antennas are connected to the AuNi thermocouples by C-shaped gold lines that serve as heat viaducts. Electrodes in the upper-left corner of Fig. 3a are used to read the emf voltage induced in the thermopile loop. Figure 3b shows the simulated temperature map of the antenna in Fig. 3a under 1-ms-long RCP pulse illumination at l 7.5 mm with 40 W cm 2
intensity. Given the value of DSAu Ni 12 mV K 1 (ref. 40) and
NATURE COMMUNICATIONS | 7:12994 | DOI: 10.1038/ncomms12994 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications 3
ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12994
the size of our detector element of 24 24 mm2, the simulation
results translate into the expected thermopile responsivity under under continuous wave (CW) illumination of B15 mV W 1.
The detailed comparison of thermocouple heating dynamics under pulsed and CW illumination is given in Supplementary Fig. 1 and Supplementary Note 2. Figure 3c shows the simulated detector responsivity as a function of light wavelength, which shows a peak at l 7.5 mm. From equation (2) it follows that the
spectral responsivity of the detector scales with the wavelength dependence of Ima 1 xy a 1 yx. Our dimer antennas were opti
mized to maximize this parameter at l 7.5 mm and its value
drops as the light wavelength is tuned away from antenna resonances.
Optical characterization. To characterize the detector performance, infrared pulses with adjustable ellipticity generated by a quantum cascade laser and a quarter-wave plate (QWP) were normally incident onto the thermopile element. Details of the experimental setup are given in the Methods section. The measurements were performed at lE7.9 mm, which corresponds to the peak detector responsivity measured experimentally, and with B270 W cm 2 input light intensity. Figure 4a compares the detector voltage output with the normalized S3 Stokes parameter of the incident light as a function of the ellipticity angle w, with w dened as sin(2w) (IRCP ILCP)/(IRCP ILCP) S3/I0 (ref. 39).
The bipolar voltage output of the detector is in an excellent agreement with the S3 Stokes parameter of the incident light, as expected theoretically. We have also tested the detector response
to the linearly polarized light at different polarization angles c (c 0 corresponds to the light polarization in vertical direction
in Fig. 3a). The results of these measurements are shown in Fig. 4b. As expected, our detectors are virtually insensitive to linearly polarized light, as such response is forbidden by symmetry, see equation (2). The extinction ratio of our detector, dened as the ratio of the maximum detector output under linear polarization illumination (that is, the maximum signal in Fig. 4b) to the detector output under purely RCP or LCP illumination, for the same light intensity, is B1/10. The residual non-zero response in Fig. 4b may be attributed to (i) non-ideal and non-identical fabrication of the AuNi thermocouples in the antenna loop (Fig. 3a), which may lead to different thermal contacts and different Seebeck coefcients41 at each thermo-couple junction and (ii) distortion of the D4 symmetry of the detector by the readout electrodes (seen the upper-left corner in Fig. 3a). We note that the second issue may be alleviated by using vertical electrodes or designing similar electrode structures at all four corners of the thermopile antenna structure.
The dependence of the thermopile output on the light intensity is shown in Fig. 4c. As expected, the detector shows linear response to the power of the optical beam. The spectral dependence of the responsivity of the detector is shown in Fig. 4d and is in a good agreement with the theoretical predictions shown in Fig. 3c. The peak detector responsivity is measured to be R 43 mV W 1 at lE7.9 mm, which is close to the theoretical
expectations presented above. Differences in the peak responsivity value and spectral position are likely the result of differences in the actual values of optical, thermal and thermoelectric
a b
6 3 0 3
1
0
1
Theory
6
Lock-in signal (V)
Lock-in signal (V)
3 0 3 6
6
90 45 0 45 90 0 15 30 45
Ellipticity angle [afii9851] (degree) Power recevied by detector (mW)
Linear polarization angle [afii9820] (degree)
c d
0.0 0.6 1.2
6
Lock-in signal (V)
4
2
0 0 100 200
45
30
15
Responsivity (mV W1 )
0 7.6 7.8 8.0 8.2 8.4
Beam intensity (W cm2) Wavelength (m)
Figure 4 | Device characterization. (a) Measured thermopile emf voltage (black dots) as a function of the ellipticity angle w of incident light at l 7.9 mm
and 270 Wcm 2 intensity, in comparison with the normalized S3 Stokes parameter (orange curve). The ellipticity angle w at 45, 0 and 45 correspond
to LCP, linear and RCP light, respectively. (b) Measured emf voltage for the linearly polarized light at different polarization directions. Measurements are performed under the same conditions as in a. (c) The dependence of emf voltage on the light intensity for RCP illumination at l 7.9 mm. (d) Measured
spectral dependence of the responsivity of the thermopile detector for RCP light illumination.
4 NATURE COMMUNICATIONS | 7:12994 | DOI: 10.1038/ncomms12994 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications
NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12994 ARTICLE
parameters of the detector materials, compared with the table values assumed in the simulations, particularly taking into account the effect of nanoscale dimensions of our antenna elements42.
DiscussionWe note that we did not aim to produce thermopile detectors with the highest possible sensitivity in this proof-of-concept demonstration. Thermopiles with orders of magnitude higher responsivity, for example, 30 V W 1 (ref. 34), may be fabricated by using thermocouples made of semiconductor materials with large difference in their Seebeck coefcients (for example, BiSb/Sb with DSE135 mV K 1 (refs 32,34)) and by reducing the heat mass and improving thermal isolation of thermocouple junctions (for example, by using air bridges with conventional materials32 or graphene43). Air-bridge antenna-coupled BiSb/Sb thermopile detectors have recently demonstrated noise equivalent power below 100 pW Hz 1/2 (ref. 34) and we expect that similar levels of sensitivity could be achievable with the detectors presented here. Even in the present form, the sensitivity of our detectors is already orders of magnitude higher than that of detectors based on the circular photogalvanic effect in semiconductors28,29, which, to the best of our knowledge, are the only other photo-detectors that have shown voltage output directly proportional to the degree of circular polarization of the incident light.
To summarize, we proposed the concept and experimentally demonstrated the operation of a novel class of antenna-coupled thermopile photodetectors that provide bipolar voltage response directly proportional to the S3 Stokes parameter of the incident light. The detector design is completely achiral and the chirality of the incident light is translated into the direction of current and/or the sign of d.c. voltage in the detector. Given the compactness and simplicity of the photodetectors presented here and the CMOS compatibility of the thermopile photodetector technology41,44, we expect that our elements can be easily integrated into various polarimetry systems and be used to provide video-rate focal-plane-array imaging of the S3 Stokes parameter of light for identication of bio-organics4,5, astronomical observations6,7 or vision in turbid media8,9.
Methods
Device fabrication. The device fabrication started from depositing a 100-nm-thick Au lm (via e-beam evaporation) on the Si substrate to serve as the bottom reector, followed by the deposition of a 2-mm-thick layer of SiO2 (via plasma-enhanced chemical vapor deposition (PECVD)) on top of the Au lm. The SiO2 layer serves as the l/4 dielectric spacer which ensures that the wave reected from the ground plane interferes constructively with the incident wave on the antenna surface. Au was chosen as the material for the optical antenna as well as part of the thermocouple, and was joined by Ni to form the thermocouple junction. The antenna-coupled thermopile structure was fabricated by the e-beam lithography, metal deposition and lift-off. The structure elements are made with 50-nm-thick Au antenna/thermocouple, 60-nm-thick Ni thermocouple and lastly 100-nm-thick Au electrodes. Ti (510 nm thick) was deposited before any Au layer to promote adhesion. The active region of the device had a footprint of 24 24 mm2. After
fabrication, the device was wire bonded to the chip carrier for testing with electrostatic discharge precautions.
Experimental setup. A tunable quantum cascade laser (Daylight Solutions) was used as the mid-infrared source. The output was 1-ms-long pulses repeated at the rate of 100 kHz. The quantum cascade laser beam was inherently linearly polarized, and was converted to be elliptical by passing through a QWP (Altechna). In this conguration, the ellipticity angle w equals the angle y between the optical axis of QWP and light linear polarization direction sin 2w
2E E sin p=2EE sin 2y
, which can be conti
nuously tuned. The beam was then focused onto the thermopile detector at normal incidence using a ZnSe lens with 6 inch focal length, resulting in a beam spot size of B500 mm in diameter. The thermopile emf voltage was recorded using the lock-in amplier (Stanford Research SR830) referenced by the laser pulse trigger. Details of extracting the value of the thermopile voltage from the lock-in amplier output are given in Supplementary Note 2. To measure the device response to linearly polarized light, QWP was replaced by a half-wave plate (Altechna) and a wire-grid polarizer.
Data availability. The data that support the ndings of this study are available from the corresponding author upon request.
References
1. Fasman, G. D. (ed.) Circular Dichroism and the Conformational Analysis of Biomolecules (Springer, 1996).
2. Ranjbar, B. & Gill, P. Circular dichroism techniques: biomolecular and nanostructural analysisa review. Chem. Biol. Drug Des. 74, 101120 (2009).
3. De Boer, J. F. & Milner, T. E. Review of polarization sensitive optical coherence tomography and Stokes vector determination. J. Biomed. Opt. 7, 359371 (2002).
4. Sparks, W. B. et al. Detection of circular polarization in light scattered from photosynthetic microbes. Proc. Natl Acad. Sci. USA 106, 78167821 (2009).
5. Nagdimunov, L., Kolokolova, L. & Sparks, W. Polarimetric technique to study (pre) biological organics in cosmic dust and planetary aerosols. Earth, Planets Space 65, 11671173 (2013).
6. Kosowsky, A. Introduction to microwave background polarization. New Astron. Rev. 43, 157168 (1999).
7. Readhead, A. C. S. et al. Polarization observations with the cosmic background imager. Science 306, 836844 (2004).
8. Gilbert, G. D. & Pernicka, J. C. Improvement of underwater visibility by reduction of backscatter with a circular polarization technique. Appl. Opt. 6, 741746 (1967).
9. Schechner, Y. Y. & Karpel, N. Recovery of underwater visibility and structure by polarization analysis. IEEE J. Ocean. Eng. 30, 570587 (2005).
10. Bouwmeester, D., Ekert, A. & Zeilinger, A. (eds) The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Springer, 2000)
11. Sherson, J. F. et al. Quantum teleportation between light and matter. Nature 443, 557560 (2006).
12. Togan, E. et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466, 730734 (2010).
13. Berry, H. G., Gabrielse, G. & Livingston, A. E. Measurement of the Stokes parameters of light. Appl. Opt. 16, 32003205 (1977).
14. Hecht, E. (ed.) Optics 4th edn (Addison Wesley, 2010).15. Afshinmanesh, F., White, J. S., Cai, W. & Brongersma, M. L. Measurement of the polarization of light using an integrated plasmonic polarimeter. Nanophoton 1, 125129 (2012).
16. Yang, Y., da Costa, R. C., Fuchter, M. J. & Campbell, A. J. Circularly polarized light detection by a chiral organic semiconductor transistor. Nat. Photonics 7, 634638 (2013).
17. Cuadrado, A., Briones, E., Gonzlez, F. & Alda, J. Polarimetric pixel using Seebeck nanoantennas. Opt. Express 22, 291293 (2014).
18. Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).
19. Proscia, N. V. et al. Control of photo-induced voltages in plasmonic crystals via spinorbit interactions. Opt. Express 24, 10402 (2016).
20. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 15131515 (2009).
21. Zhao, Y., Belkin, M. A. & Alu, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 3, 870 (2012).
22. Rodrguez-Fortuno, F. J. et al. Near-eld interference for the unidirectional excitation of electromagnetic guided modes. Science 340, 328330 (2013).
23. Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340, 331334 (2013).
24. Mueller, J. P. B., Leosson, K. & Capasso, F. Ultracompact metasurface in-line polarimeter. Optica 3, 4247 (2016).
25. Huang, L. et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci. Appl. 2, e70 (2013).
26. Yin, X., Ye, Z., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 14051407 (2013).
27. Rodrguez-Fortuno, F. J., Barber-Sanz, I., Puerto, D., Griol, A. & Martinez, A. Resolving light handedness with an on-chip silicon microdisk. ACS Photonics 1, 762767 (2014).
28. Ganichev, S. D. et al. Subnanosecond ellipticity detector for laser radiation. Appl. Phys. Lett. 91, 091101 (2007).
29. Danilov, S. N. et al. Fast detector of the ellipticity of infrared and terahertz radiation basedon HgTe quantum well structures. J. Appl. Phys. 105, 013106 (2009).
30. Ganichev, S. D. et al. Spin-galvanic effect. Nature 417, 153156 (2002).31. Ganichev, S. Spin-galvanic effect and spin orientation induced circular photogalvanic effect in quantum well structures. Adv. Solid State Phys. 43, 427442 (2003).
32. Neikirk, D. P. & Rutledge, D. B. Self-heated thermocouples for far-infrared detection. Appl. Phys. Lett. 41, 400402 (1982).
NATURE COMMUNICATIONS | 7:12994 | DOI: 10.1038/ncomms12994 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications 5
ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12994
33. Chong, N. & Ahmed, H. Antenna-coupled polycrystalline silicon air-bridge thermal detector for mid-infrared radiation. Appl. Phys. Lett. 71, 16071609 (1997).
34. Ihring, A. et al. High performance uncooled THz sensing structures based on antenna-coupled air bridges. Microelectron. Eng. 98, 512515 (2012).
35. Szakmany, G. P., Krenz, P. M., Orlov, A. O., Bernstein, G. H. & Porod, W. Antenna-coupled nanowire thermocouples for infrared detection. IEEE Trans. Nanotechnol. 12, 163167 (2013).
36. Funston, A. M., Novo, C., Davis, T. J. & Mulvaney, P. Plasmon coupling of gold nanorods at short distances in different geometries. Nano Lett. 9, 16511658 (2009).
37. Seebeck, T. J. Ueber die magnetische Polarisation der Metalle und Erze durch Temperatur-Differenz. Ann. Phys. 82, 133160 (1826).
38. Rowe, D. M. (ed.) Thermoelectrics Handbook: Macro to Nano (CRC Press, 2010).
39. Goldstein, D. Polarized Light 3rd edn (CRC Press, 2010).40. Szakmany, G. P., Orlov, A. O., Bernstein, G. H. & Porod, W. Single-metal nanoscale thermocouples. IEEE Trans. Nanotechnol. 13, 12341239 (2014).
41. Schaufelbuhl, A. et al. Uncooled low-cost thermal imager based on micromachined CMOS integrated sensor array. J. Microelectromech. Syst. 10, 503510 (2001).
42. Volz, S. Microscale and Nanoscale Heat Transfer (Springer, 2007).43. Hsu, A. L. et al. Graphene-based thermopile for thermal imaging applications. Nano Lett. 15, 72117216 (2015).
44. Oliver, A. D. & Wise, K. D. A 1024-element bulk-micromachined thermopile infrared imaging array. Sens. Actuators A 73, 222231 (1999).
Acknowledgements
The authors would like to acknowledge helpful discussions with Emanuel Tutuc, Stefano
Larentis and Kayoung Lee. Device fabrication was carried out in Microelectronics
Research Center at the University of Texas at Austin, which is a member of the National
Nanotechnology Coordinated Infrastructure (NNCI). The authors acknowledge nancial
support from the Robert A. Welch Foundation (Grant no. F-1705).
Author contributions
M.A.B. conceived the concept. M.A.B. and F.L. designed the device structure. F.L.
performed the simulation, device fabrication and experimental measurements. J.L., A.J.
and S.J. assisted in the simulation, fabrication and measurements, respectively. M.A.B.
and F.L. wrote the manuscript.
Additional information
Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications
Web End =http://www.nature.com/
http://www.nature.com/naturecommunications
Web End =naturecommunications
Competing nancial interests: The authors declare no competing nancial interests.
Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/
Web End =http://npg.nature.com/
http://npg.nature.com/reprintsandpermissions/
Web End =reprintsandpermissions/
How to cite this article: Lu, F. et al. Thermopile detector of light ellipticity.
Nat. Commun. 7, 12994 doi: 10.1038/ncomms12994 (2016).
This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this
article are included in the articles Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Web End =http://creativecommons.org/licenses/by/4.0/
r The Author(s) 2016
6 NATURE COMMUNICATIONS | 7:12994 | DOI: 10.1038/ncomms12994 | http://www.nature.com/naturecommunications
Web End =www.nature.com/naturecommunications
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Nature Publishing Group Oct 2016
Abstract
Polarimetric imaging is widely used in applications from material analysis to biomedical diagnostics, vision and astronomy. The degree of circular polarization, or light ellipticity, is associated with the S3 Stokes parameter which is defined as the difference in the intensities of the left- and right-circularly polarized components of light. Traditional way of determining this parameter relies on using several external optical elements, such as polarizers and wave plates, along with conventional photodetectors, and performing at least two measurements to distinguish left- and right-circularly polarized light components. Here we theoretically propose and experimentally demonstrate a thermopile photodetector element that provides bipolar voltage output directly proportional to the S3 Stokes parameter of the incident light.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer