It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Residents of nursing homes are commonly colonized with methicillin-resistant Staphylococcus aureus (MRSA) but there is a limited understanding of the dynamics and determinants of spread in this setting. To address this gap, we sought to use mathematical modeling to assess the epidemic potential of MRSA in nursing homes and to determine conditions under which non-USA300 and USA300 MRSA could be eliminated or reduced in the facilities.
Methods
Model parameters were estimated from data generated during a longitudinal study of MRSA in 6 Wisconsin nursing homes. The data included subject colonization status with strain-specific MRSA collected every 3 months for up to 1 year. Deterministic and stochastic co-colonization and single-strain models were developed to describe strain-specific dynamics of MRSA in these facilities. Basic reproduction numbers of strain-independent MRSA, non-USA300 and USA300 MRSA were estimated numerically. The impact of antibiotic use in the past 3 months on the prevalence of strain-specific MRSA and associated basic reproduction numbers were evaluated.
Results
Our models predicted that MRSA would persist in Wisconsin nursing homes, and non-USA300 would remain the dominant circulating strain. MRSA eradication was theoretically achievable by elimination of MRSA-positive admissions over the course of years. Substantial reductions in MRSA prevalence could be attained through marked increase in clearance rates or reduction in MRSA-positive admissions sustained over years. The basic reproduction number of strain-independent MRSA was 0.18 (95 % CI = 0.13-0.23). Recent antibiotic use increased the prevalence of strain-specific MRSA and associated basic reproduction numbers, but was unlikely to lead to an outbreak.
Conclusions
Based on our model, MRSA elimination from nursing homes, while theoretically possible, was unlikely to be achieved in practice. Decolonization therapy that can sustain higher clearance rates or lower MRSA-positive introductions over years may reduce strain-specific prevalence of MRSA in the facilities, and antibiotic stewardship may contribute to this effort. Large-scale MRSA outbreaks were unlikely in this setting.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer