Full Text

Turn on search term navigation

Copyright Nature Publishing Group Oct 2016

Abstract

Cancer is a disease associated with genomic instability that often results from oncogene activation. This in turn leads to hyperproliferation and replication stress. However, the molecular mechanisms that underlie oncogene-induced replication stress are still poorly understood. Oncogenes such as HRASV12 promote proliferation by upregulating general transcription factors to stimulate RNA synthesis. Here we investigate whether this increase in transcription underlies oncogene-induced replication stress. We show that in cells overexpressing HRASV12 , elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which together with R-loop accumulation results in replication fork slowing and DNA damage. Furthermore, overexpression of TBP alone causes the hallmarks of oncogene-induced replication stress, including replication fork slowing, DNA damage and senescence. Consequently, we reveal that increased transcription can be a mechanism of oncogene-induced DNA damage, providing a molecular link between upregulation of the transcription machinery and genomic instability in cancer.

Details

Title
Increased global transcription activity as a mechanism of replication stress in cancer
Author
Kotsantis, Panagiotis; Silva, Lara Marques; Irmscher, Sarah; Jones, Rebecca M; Folkes, Lisa; Gromak, Natalia; Petermann, Eva
Pages
13087
Publication year
2016
Publication date
Oct 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1827631466
Copyright
Copyright Nature Publishing Group Oct 2016