It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The introduction of the sustainable development elements in the construction industry leads to finding new ways of using waste minerals that are difficult in storage and recycling. Coal combustion products have been already introduced into building materials as a part of cement or concrete but they have been thought insufficiently compatible with the polymer-cement binders [7]. The paper presents results of the mechanical properties of polymer-cement composites containing two types of mineral additives: waste perlite powder that is generated during the perlite expanding process, and calcium fly ash which is the byproduct of burning coal in conventional furnaces. Mechanical tests of polymer-cement composites modified with wastes were carried out after 28 and 90 days of curing. As a part of preliminary study specific surface area and particle size distribution of mineral wastes were determined.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer