Full text

Turn on search term navigation

Copyright © 2016 Zigang Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

We proposed a new method for designing the CMOS differential log-companding amplifier which achieves significant improvements in linearity, common-mode rejection ratio (CMRR), and output range. With the new nonlinear function used in the log-companding technology, this proposed amplifier has a very small total harmonic distortion (THD) and simultaneously a wide output current range. Furthermore, a differential structure with conventionally symmetrical configuration has been adopted in this novel method in order to obtain a high CMRR. Because all transistors in this amplifier operate in the weak inversion, the supply voltage and the total power consumption are significantly reduced. The novel log-companding amplifier was designed using a 0.18 μm CMOS technology. Improvements in THD, output current range, noise, and CMRR are verified using simulation data. The proposed amplifier operates from a 0.8 V supply voltage, shows a 6.3 μA maximum output current range, and has a 6 μW power consumption. The THD is less than 0.03%, the CMRR of this circuit is 74 dB, and the input referred current noise density is 166.1 fA / Hz . This new method is suitable for biomedical applications such as electrocardiogram (ECG) signal acquisition.

Details

Title
A Novel Differential Log-Companding Amplifier for Biosignal Sensing
Author
Dong, Zigang; Zhou, Xiaolin; Zhang, Yuanting
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
1687725X
e-ISSN
16877268
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1827850450
Copyright
Copyright © 2016 Zigang Dong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.