It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
A three-dimensional model of binary chemical reactions is studied. We consider an ab initio quantum two-particle system subjected to an attractive interaction potential and to a heat bath at thermal equilibrium at absolute temperature T > 0 . Under the sole action of the attraction potential, the two particles can either be bound or unbound to each other. While at T = 0 , there is no transition between both states, such a transition is possible when T > 0 (due to the heat bath) and plays a key role as k B T approaches the magnitude of the attractive potential. We focus on a quantum regime, typical of chemical reactions, such that: (a) the thermal wavelength is shorter than the range of the attractive potential (lower limit on T) and (b) ( 3 / 2 ) k B T does not exceed the magnitude of the attractive potential (upper limit on T). In this regime, we extend several methods previously applied to analyze the time duration of DNA thermal denaturation. The two-particle system is then described by a non-equilibrium Wigner function. Under Assumptions (a) and (b), and for sufficiently long times, defined by a characteristic time scale D that is subsequently estimated, the general dissipationless non-equilibrium equation for the Wigner function is approximated by a Smoluchowski-like equation displaying dissipation and quantum effects. A comparison with the standard chemical kinetic equations is made. The time τ required for the two particles to transition from the bound state to unbound configurations is studied by means of the mean first passage time formalism. An approximate formula for τ, in terms of D and exhibiting the Arrhenius exponential factor, is obtained. Recombination processes are also briefly studied within our framework and compared with previous well-known methods.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer