Full text

Turn on search term navigation

Copyright Nature Publishing Group Oct 2016

Abstract

Mammalian target of rapamycin (mTOR), a regulator of growth in many tissues, mediates its activity through two multiprotein complexes, mTORC1 or mTORC2. The role of mTOR signalling in skin morphogenesis and epidermal development is unknown. Here we identify mTOR as an essential regulator in skin morphogenesis by epidermis-specific deletion of Mtor in mice (mTOREKO ). mTOREKO mutants are viable, but die shortly after birth due to deficits primarily during the early epidermal differentiation programme and lack of a protective barrier development. Epidermis-specific loss of Raptor, which encodes an essential component of mTORC1, confers the same skin phenotype as seen in mTOREKO mutants. In contrast, newborns with an epidermal deficiency of Rictor, an essential component of mTORC2, survive despite a hypoplastic epidermis and disruption in late stage terminal differentiation. These findings highlight a fundamental role for mTOR in epidermal morphogenesis that is regulated by distinct functions for mTORC1 and mTORC2.

Details

Title
mTORC1 and mTORC2 regulate skin morphogenesis and epidermal barrier formation
Author
Ding, Xiaolei; Bloch, Wilhelm; Iden, Sandra; Rüegg, Markus A; Hall, Michael N; Leptin, Maria; Partridge, Linda; Eming, Sabine A
Pages
13226
Publication year
2016
Publication date
Oct 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1832777957
Copyright
Copyright Nature Publishing Group Oct 2016