It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Boolean network modeling has been widely used to model large-scale biomolecular regulatory networks as it can describe the essential dynamical characteristics of complicated networks in a relatively simple way. When we analyze such Boolean network models, we often need to find out attractor states to investigate the converging state features that represent particular cell phenotypes. This is, however, very difficult (often impossible) for a large network due to computational complexity.
Results
There have been some attempts to resolve this problem by partitioning the original network into smaller subnetworks and reconstructing the attractor states by integrating the local attractors obtained from each subnetwork. But, in many cases, the partitioned subnetworks are still too large and such an approach is no longer useful. So, we have investigated the fundamental reason underlying this problem and proposed a novel efficient way of hierarchically partitioning a given large network into smaller subnetworks by focusing on some attractors corresponding to a particular phenotype of interest instead of considering all attractors at the same time. Using the definition of attractors, we can have a simplified update rule with fixed state values for some nodes. The resulting subnetworks were small enough to find out the corresponding local attractors which can be integrated for reconstruction of the global attractor states of the original large network.
Conclusions
The proposed approach can substantially extend the current limit of Boolean network modeling for converging state analysis of biological networks.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer