Full text

Turn on search term navigation

Copyright Nature Publishing Group Nov 2016

Abstract

Multipartite entangled states are a fundamental resource for a wide range of quantum information processing tasks. In particular, in quantum networks, it is essential for the parties involved to be able to verify if entanglement is present before they carry out a given distributed task. Here we design and experimentally demonstrate a protocol that allows any party in a network to check if a source is distributing a genuinely multipartite entangled state, even in the presence of untrusted parties. The protocol remains secure against dishonest behaviour of the source and other parties, including the use of system imperfections to their advantage. We demonstrate the verification protocol in a three- and four-party setting using polarization-entangled photons, highlighting its potential for realistic photonic quantum communication and networking applications.

Details

Title
Experimental verification of multipartite entanglement in quantum networks
Author
Mccutcheon, W; Pappa, A; Bell, B A; Mcmillan, A; Chailloux, A; Lawson, T; Mafu, M; Markham, D; Diamanti, E; Kerenidis, I; Rarity, J G; Tame, M S
Pages
13251
Publication year
2016
Publication date
Nov 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1837231163
Copyright
Copyright Nature Publishing Group Nov 2016