Full Text

Turn on search term navigation

© 2016 Zimmermann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cheating is a common phenomenon in high stakes admission, licensing and university exams and threatens their validity. To detect if some exam questions had been affected by cheating, we simulated how data would look like if some test takers possessed item preknowledge: Responses to a small number of items were set to correct for 1–10% of test takers. Item difficulty, item discrimination, item fit, and local dependence were computed using an IRT 2PL model. Then changes in these item properties from the non-compromised to the compromised dataset were scrutinized for their sensitivity to item preknowledge. A decline in the discrimination parameter compared with previous test versions and an increase in local item dependence turned out to be the most sensitive indicators of item preknowledge. A multiplicative combination of shifts in item discrimination, item difficulty, and local item dependence detected item preknowledge with a sensitivity of 1.0 and a specificity of .95 if 11 of 80 items were preknown to 10% of the test takers. Cheating groups smaller than 5% of the test takers were not detected reliably. In the discussion, we outline an effective search for items affected by cheating, which would enable faculty staff without IRT knowledge to detect compromised items and exclude them from scoring.

Details

Title
Are Exam Questions Known in Advance? Using Local Dependence to Detect Cheating
Author
Zimmermann, Stefan; Klusmann, Dietrich; Hampe, Wolfgang
First page
e0167545
Section
Research Article
Publication year
2016
Publication date
Dec 2016
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1845246605
Copyright
© 2016 Zimmermann et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.