It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Phenotypic variation is determined by a combination of genotype, environment and their interactions. The realization that allelic diversity can be both genetic and epigenetic allows the environmental component to be further separated. Partitioning phenotypic variation observed among inbred lines with an altered epigenome can allow the epigenetic component controlling quantitative traits to be estimated. To assess the contribution of epialleles on phenotypic variation and determine the fidelity with which epialleles are inherited, we have developed a novel hypomethylated population of strawberry (2n = 2x = 14) using 5-azacytidine from which individuals with altered phenotypes can be identified, selected and characterized.
Results
The hypomethylated population was generated using an inbred strawberry population in the F. vesca ssp. vesca accession Hawaii 4. Analysis of whole genome sequence data from control and hypomethylated lines indicate that 5-azacytidine exposure does not increase SNP above background levels. The populations contained only Hawaii 4 alleles, removing introgression of alternate F. vesca alleles as a potential source of variation. Although genome sequencing and genetic marker data are unable to rule out 5-azacytidine induced chromosomal rearrangements as a potential source of the trait variation observed, none were detected in our survey. Quantitative trait variation focusing on flowering time and rosette diameter was scored in control and treated populations where expanded levels of variation were observed among the hypomethylated lines. Methylation sensitive molecular markers indicated that 5-azacytidine induced alterations in DNA methylation patterns and inheritance of methylation patterns were confirmed by bisulfite sequencing of targeted regions. It is possible that methylation polymorphisms might underlie or have induced genetic changes underlying the observable differences in quantitative phenotypes.
Conclusions
This population developed in a uniform genetic background provides a resource for the discovery of new variation controlling quantitative traits. Genome sequence analysis indicates that 5-azacytidine did not induce point mutations and the induced variation is largely restricted to DNA methylation. Using this resource, we have identified new variation and demonstrated the inheritance of both variant trait and methylation patterns. Although direct associations remain to be determined, these data suggest epigenetic variation might be subject to selection.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer