It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
In animal ecology, inter-individual encounters are often investigated using automated proximity loggers. However, data acquired are typically spatially implicit, i.e. the question 'Where did the contact occur?' remains unanswered. To resolve this issue, recent advancements in Wireless Sensor Network technology have facilitated the geo-referencing of animal contacts. Among these, WildScope devices integrate GPS-based telemetry within fully distributed networks, allowing contact-triggered GPS location acquisition. In this way, the ecological context in which contacts occur can be assessed. We evaluated the performance of WildScope in close-to-real settings, whilst controlling for movement of loggers and obstacles, performing field trials that simulated: (1) different scenarios of encounters between individuals (mobile-mobile contacts) and (2) patterns of individual focal resource use (mobile-fixed contacts). Each scenario involved one to three mobile and two fixed loggers and was replicated at two different radio transmission powers. For each scenario, we performed and repeated a script of actions that corresponded to expected contact events and contact-triggered GPS locations. By comparing expected and observed events, we obtained the success rate of: (1) contact detection and (2) contact-triggered GPS location acquisition. We modelled these in dependence on radio power and number of loggers by means of generalized linear mixed models.
Results
Overall we found a high success rate of both contact detection (88-87%: power 3 and 7) and contact-triggered GPS location acquisition (85-97%: power 3 and 7). The majority of errors in contact detection were false negatives (66-69%: power 3 and 7). Number of loggers was positively correlated with contact success rate, whereas radio power had little effect on either variable.
Conclusions
Our work provides an easily repeatable approach for exploring the potential and testing the performance of WildScope GPS-based geo-referencing proximity loggers, for studying both animal-to-animal encounters and animal use of focal resources. However, our finding that success rate did not equal 100%, and in particular that false negatives represent a non-negligible proportion, suggests that validation of proximity loggers should be undertaken in close-to-real settings prior to field deployment, as stochastic events affecting radio connectivity (e.g. obstacles, movement) can bias proximity patterns in real-life scenarios.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer