Full text

Turn on search term navigation

Copyright © 2016 Tiane Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

For multiobjective optimization problems, different optimization variables have different influences on objectives, which implies that attention should be paid to the variables according to their sensitivity. However, previous optimization studies have not considered the variables sensitivity or conducted sensitivity analysis independent of optimization. In this paper, an integrated algorithm is proposed, which combines the optimization method SPEA (Strength Pareto Evolutionary Algorithm) with the sensitivity analysis method SRCC (Spearman Rank Correlation Coefficient). In the proposed algorithm, the optimization variables are worked as samples of sensitivity analysis, and the consequent sensitivity result is used to guide the optimization process by changing the evolutionary parameters. Three cases including a mathematical problem, an airship envelope optimization, and a truss topology optimization are used to demonstrate the computational efficiency of the integrated algorithm. The results showed that this algorithm is able to simultaneously achieve parameter sensitivity and a well-distributed Pareto optimal set, without increasing the computational time greatly in comparison with the SPEA method.

Details

Title
A Novel Multiobjective Optimization Method Based on Sensitivity Analysis
Author
Li, Tiane; Sun, Xiaoying; Lu, Zhengzheng; Wu, Yue
Publication year
2016
Publication date
2016
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1846089270
Copyright
Copyright © 2016 Tiane Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.