It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Tick-borne Babesia bigemina is responsible for acute and potentially lethal hemolytic disease in cattle. The development of genetic manipulation tools necessary to the better understanding of parasite biology is currently limited by the lack of a complete parasite genome and experimental tools such as transfection. Effective promoters, required to regulate expression of transgenes, such as the elongation factor-1 alpha (ef-1α), have been identified in other apicomplexans such as Babesia bovis and Plasmodium falciparum.
Methods
The B. bigemina ef-1a locus was defined by searching a partial genome library of B. bigemina (Sanger Institute). Presence of an intron in the 5' untranslated region was determined by 5' Rapid Amplification of cDNA Ends (RACE) analysis. Promoter activity was determined by measurement of luciferase expression at several time points after electroporation, efficiency of transfections and normalization of data was determined by quantitative PCR and by the percentage of parasitized erythrocytes.
Results
The ef-1α locus contains two identical head to head ef-1α genes separated by a 1.425 kb intergenic (IG) region. Significant sequence divergence in the regions upstream of the inverted repeats on each side of the B. bigemina IG region suggest independent regulation mechanisms for controlling expression of each of the two ef-1α genes. Plasmid constructs containing the 5' and 3' halves of the IG regions controlling the expression of the luciferase gene containing a 3' region of a B. bigemina rap-1a gene, were generated for the testing of luciferase activity in transiently transfected parasites. Both halves of the ef-1α IG region tested showed the ability to promote high level production of luciferase. Moreover, both B. bigemina ef-1α promoters are also active in transiently transfected B. bovis and conversely, a B. bovis ef-1α promoter is active in transiently transfected B. bigemina.
Conclusions
Collectively these data demonstrate the existence of two distinct promoters with homologous and heterologous promoter function in B. bigemina and B. bovis which is described for the first time in Babesia species. This study is of significance for development of interspecies stable transfection systems for B. bigemina and for B. bovis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer