Full Text

Turn on search term navigation

© 2016 Yeasmin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Target of rapamycin complex 1 (TORC1) phosphorylates autophagy-related Atg13 and represses autophagy under nutrient-rich conditions. However, when TORC1 becomes inactive upon nutrient depletion or treatment with the TORC1 inhibitor rapamycin, Atg13 dephosphorylation occurs rapidly, and autophagy is induced. At present, the phosphatases involved in Atg13 dephosphorylation remain unknown. Here, we show that two protein phosphatase 2A (PP2A) phosphatases, PP2A-Cdc55 and PP2A-Rts1, which are activated by inactivation of TORC1, are required for sufficient Atg13 dephosphorylation and autophagy induction after TORC1 inactivation in budding yeast. After rapamycin treatment, dephosphorylation of Atg13, activation of Atg1 kinase, pre-autophagosomal structure (PAS) formation and autophagy induction are all impaired in PP2A-deleted cells. Conversely, overexpression of non-phosphorylatable Atg13 suppressed defects in autophagy in PP2A mutant. This study revealed that the orchestrated action of PP2A antagonizes Atg13 phosphorylation and promotes autophagy after the inactivation of TORC1.

Details

Title
Orchestrated Action of PP2A Antagonizes Atg13 Phosphorylation and Promotes Autophagy after the Inactivation of TORC1
Author
Akter MST Yeasmin; Talukdar, Muhammad Waliullah; Kondo, Akihiro; Kaneko, Atsuki; Koike, Naoki; Ushimaru, Takashi
First page
e0166636
Section
Research Article
Publication year
2016
Publication date
Dec 2016
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1848850652
Copyright
© 2016 Yeasmin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.