Full Text

Turn on search term navigation

© 2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Willett DS, George J, Willett NS, Stelinski LL, Lapointe SL (2016) Machine Learning for Characterization of Insect Vector Feeding. PLoS Comput Biol 12(11): e1005158. doi:10.1371/journal.pcbi.1005158

Abstract

Insects that feed by ingesting plant and animal fluids cause devastating damage to humans, livestock, and agriculture worldwide, primarily by transmitting pathogens of plants and animals. The feeding processes required for successful pathogen transmission by sucking insects can be recorded by monitoring voltage changes across an insect-food source feeding circuit. The output from such monitoring has traditionally been examined manually, a slow and onerous process. We taught a computer program to automatically classify previously described insect feeding patterns involved in transmission of the pathogen causing citrus greening disease. We also show how such analysis contributes to discovery of previously unrecognized feeding states and can be used to characterize plant resistance mechanisms. This advance greatly reduces the time and effort required to analyze insect feeding, and should facilitate developing, screening, and testing of novel intervention strategies to disrupt pathogen transmission affecting agriculture, livestock and human health.

Details

Title
Machine Learning for Characterization of Insect Vector Feeding
Author
Willett, Denis S; George, Justin; Willett, Nora S; Stelinski, Lukasz L; Lapointe, Stephen L
Section
Research Article
Publication year
2016
Publication date
Nov 2016
Publisher
Public Library of Science
ISSN
1553734X
e-ISSN
15537358
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1849657284
Copyright
© 2016 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Willett DS, George J, Willett NS, Stelinski LL, Lapointe SL (2016) Machine Learning for Characterization of Insect Vector Feeding. PLoS Comput Biol 12(11): e1005158. doi:10.1371/journal.pcbi.1005158