Full Text

Turn on search term navigation

Copyright Nature Publishing Group Dec 2016

Abstract

Penetration of surface meltwater to the bed of the Greenland Ice Sheet each summer causes an initial increase in ice speed due to elevated basal water pressure, followed by slowdown in late summer that continues into fall and winter. While this seasonal pattern is commonly explained by an evolution of the subglacial drainage system from an inefficient distributed to efficient channelized configuration, mounting evidence indicates that subglacial channels are unable to explain important aspects of hydrodynamic coupling in late summer and fall. Here we use numerical models of subglacial drainage and ice flow to show that limited, gradual leakage of water and lowering of water pressure in weakly connected regions of the bed can explain the dominant features in late and post melt season ice dynamics. These results suggest that a third weakly connected drainage component should be included in the conceptual model of subglacial hydrology.

Details

Title
Greenland subglacial drainage evolution regulated by weakly connected regions of the bed
Author
Hoffman, Matthew J; Andrews, Lauren C; Price, Stephen A; Catania, Ginny A; Neumann, Thomas A; Lüthi, Martin P; Gulley, Jason; Ryser, Claudia; Hawley, Robert L; Morriss, Blaine
Pages
13903
Publication year
2016
Publication date
Dec 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1850130170
Copyright
Copyright Nature Publishing Group Dec 2016