Full Text

Turn on search term navigation

Copyright Nature Publishing Group Dec 2016

Abstract

Metal-organic frameworks offer tremendous potential for efficient separation of molecular mixtures. Different pore sizes and suitable functionalizations of the framework allow for an adjustment of the static selectivity. Here we report membranes which offer dynamic control of the selectivity by remote signals, thus enabling a continuous adjustment of the permeate flux. This is realized by assembling linkers containing photoresponsive azobenzene-side-groups into monolithic, crystalline membranes of metal-organic frameworks. The azobenzene moieties can be switched from the trans to the cis configuration and vice versa by irradiation with ultraviolet or visible light, resulting in a substantial modification of the membrane permeability and separation factor. The precise control of the cis:trans azobenzene ratio, for example, by controlled irradiation times or by simultaneous irradiation with ultraviolet and visible light, enables the continuous tuning of the separation. For hydrogen:carbon-dioxide, the separation factor of this smart membrane can be steplessly adjusted between 3 and 8.

Details

Title
Tunable molecular separation by nanoporous membranes
Author
Wang, Zhengbang; Knebel, Alexander; Grosjean, Sylvain; Wagner, Danny; Bräse, Stefan; Wöll, Christof; Caro, Jürgen; Heinke, Lars
Pages
13872
Publication year
2016
Publication date
Dec 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1850374100
Copyright
Copyright Nature Publishing Group Dec 2016