Full text

Turn on search term navigation

Copyright Nature Publishing Group Dec 2016

Abstract

Nanophotonics is becoming invaluable for an expanding range of applications, from controlling the spontaneous emission rate and the directionality of quantum emitters, to reducing material requirements of solar cells by an order of magnitude. These effects are highly dependent on the near field of the nanostructure, which constitutes the evanescent fields from propagating and resonant localized modes. Although the interactions between quantum emitters and nanophotonic structures are increasingly well understood theoretically, directly imaging these interactions experimentally remains challenging. Here we demonstrate a photoactivated localization microscopy-based technique to image emitter-nanostructure interactions. For a 75 nm diameter silicon nanowire, we directly observe a confluence of emission rate enhancement, directivity modification and guided mode excitation, with strong interaction at scales up to 13 times the nanowire diameter. Furthermore, through analytical modelling we distinguish the relative contribution of these effects, as well as their dependence on emitter orientation.

Details

Title
Super-resolution imaging of light-matter interactions near single semiconductor nanowires
Author
Johlin, Eric; Solari, Jacopo; Mann, Sander A; Wang, Jia; Shimizu, Thomas S; Garnett, Erik C
Pages
13950
Publication year
2016
Publication date
Dec 2016
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1850377671
Copyright
Copyright Nature Publishing Group Dec 2016