It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Cluster surveys provide rapid but representative estimates of key nutrition indicators in humanitarian crises. For these surveys, an accurate estimate of the design effect is critical to calculate a sample size that achieves adequate precision with the minimum number of sampling units. This paper describes the variability in design effect for three key nutrition indicators measured in small-scale surveys and models the association of design effect with parameters hypothesized to explain this variability.
Methods
380 small-scale surveys from 28 countries conducted between 2006 and 2013 were analyzed. We calculated prevalence and design effect of wasting, underweight, and stunting for each survey as well as standard deviations of the underlying continuous Z-score distribution. Mean cluster size, survey location and year were recorded. To describe design effects, median and interquartile ranges were examined. Generalized linear regression models were run to identify potential predictors of design effect.
Results
Median design effect was under 2.00 for all three indicators; for wasting, the median was 1.35, the lowest among the indicators. Multivariable linear regression models suggest significant, positive associations of design effect and mean cluster size for all three indicators, and with prevalence of wasting and underweight, but not stunting. Standard deviation was positively associated with design effect for wasting but negatively associated for stunting. Survey region was significant in all three models.
Conclusions
This study supports the current field survey guidance recommending the use of 1.5 as a benchmark for design effect of wasting, but suggests this value may not be large enough for surveys with a primary objective of measuring stunting or underweight. The strong relationship between design effect and region in the models underscores the continued need to consider country- and locality-specific estimates when designing surveys. These models also provide empirical evidence of a positive relationship between design effect and both mean cluster size and prevalence, and introduces standard deviation of the underlying continuous variable (Z-scores) as a previously unexplored factor significantly associated with design effect. The magnitude and directionality of this association differed by indicator, underscoring the need for further investigation into the relationship between standard deviation and design effect.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer