Full text

Turn on search term navigation

© 2017 Makhoul et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Background

We previously reported improved pathologic complete response (pCR) in a prospective phase II study using neoadjuvant bevacizumab in combination with chemotherapy compared to chemotherapy alone in breast cancer patients (41% vs. 25%, p = 0.0291). In this study, we queried germline single-nucleotide polymorphisms (SNPs) in angiogenesis-related genes for their impact on pCR and overall survival (OS).

Methods

DNA for genotyping was available from 34 subjects who received bevacizumab in addition to chemotherapy and 29 subjects who did not. Using Illumina® technology, we queried 504 SNPs with a minor allele frequency (MAF) of at least 5%, located in 10 angiogenesis-related genes, for their effect on pCR via logistic regression with an additive-inheritance model while adjusting for race and bevacizumab treatment. SNPs that showed significant associations with pCR were selected for additional characterization.

Results

After adjusting for race and tumor type, patients who had bevacizumab added to their neoadjuvant therapy were found to experience a significantly improved rate of pCR compared to patients who did not (adjusted OR 8.40, 95% CI 1.90–37.1). When patients were analyzed for SNP effects via logistic regression with race and bevacizumab treatment included as covariates, two SNPs in angiopoietin 1 (ANGPT1), six in ANGPT2, three in fibroblast growth factor 2 (FGF2), four in matrix metalloproteinase 9 (MMP9), three in tyrosine kinase, endothelial (TEK) and two in vascular endothelial growth factor A (VEGFA) were associated with pCR (P<0.05). However, when overall survival was considered, there was no difference between treatment groups or between genotypes.

Conclusion

Genetic variability in TEK, ANGPT1, ANGPT2, FGF2, MMP9 and VEGFA is associated with pCR in bevacizumab-treated patients. Consistent with other studies, adding bevacizumab to standard chemotherapy did not impact OS, likely due to other factors and thus, while SNPs in TEK, ANGPT1, ANGPT2, FGF2, MMP9 and VEGFA were associated with pCR, they were not predictive of OS in this patient population.

Trial Registration

ClinicalTrials.gov NCT00203502

Details

Title
Germline Genetic Variants in TEK, ANGPT1, ANGPT2, MMP9, FGF2 and VEGFA Are Associated with Pathologic Complete Response to Bevacizumab in Breast Cancer Patients
Author
Makhoul, Issam; Todorova, Valentina K; Siegel, Eric R; Erickson, Stephen W; Dhakal, Ishwori; Raj, Vinay R; Lee, Jeannette Y; Orloff, Mohammed S; Griffin, Robert J; Henry-Tillman, Ronda S; Klimberg, Suzanne; Hutchins, Laura F; Kadlubar, Susan A
First page
e0168550
Section
Research Article
Publication year
2017
Publication date
Jan 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1855069443
Copyright
© 2017 Makhoul et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.