Abstract

Diabetes is a metabolic disorder characterized by hyperglycemia, altered carbohydrate, lipid and protein metabolism. In recent studies, Nanoscience and nanotechnology are blazing fields for researchers; for researchers; of late there has been a prodigious excitement in the field of nanopharmacology to study silver nanoparticle (SNP) synthesis using natural products. Biological methods have been used to synthesize SNPs using medicinally active plants having an antidiabetic role, and this made us to assess the biologically synthesized SNPs from the seed extract of Psoralea corylifolia using 1 mM silver nitrate solution. The synthesized herbal&-mediated SNPs (HMSNPs) were subjected to various characterization techniques such as X&-ray diffraction analysis (XRD), energy dispersive X&-ray (EDX) analysis, transmission electron microscope (TEM), and differential light scattering (DLS), respectively. In the current study the HMSNPs were tested to observe the in vitro antidiabetic activity and possible toxic effects in healthy female albino mice by following OECD guidelines&-425. Huge data from biochemical, cellular, mouse, and chemical inhibitor studies have recognized protein tyrosine phosphatase 1B (PTP1B) as a major negative regulator of insulin signaling. In addition, corroboration suggests that insulin action can be enhanced by the inhibition of PTP1B. Keeping in view of the above fact, the PTP1B assay was done to determine the PTP1 B inhibitory effect of HMSNPs. It can be concluded that medicinal plants can be a good source for the synthe sis of HMSNPs. This study can be used for the development of valuable nanomedicines to treat various ailments, and it also highlights the safety and biocompatibility of SNPs within a biological cell; in vivo parameters need to be considered for further discoveries. Abbreviations used: HMSNPs: Herbal mediated silver nanoparticles, XRD: X&-ray diffraction, EDX: Energy dispersive X&-ray analysis, TEM: Transmission electron microscope, PTP1B: Protein tyrosine phosphotase 1B, OECD: Organization for economic cooperation and development

Details

Title
Green biosynthesis, characterization, in vitro antidiabetic activity, and investigational acute toxicity studies of some herbal-mediated silver nanoparticles on animal models
Author
Shanker, Kalakotla; Mohan, Gottumukkala Krishna; Hussain, Md; Jayarambabu, Naradala; Pravallika, Poka Lakshmi
Publication year
2017
Publication date
Jan/Mar 2017
Publisher
Sage Publications Ltd.
ISSN
09731296
e-ISSN
09764062
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1858719948
Copyright
Copyright Medknow Publications & Media Pvt Ltd Jan-Mar 2017