It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Due to the necessity of the low-power implementation of newly-developed electrocardiogram (ECG) sensors, exact ECG data reconstruction from the compressed measurements has received much attention in recent years. Our interest lies in improving the compression ratio (CR), as well as the ECG reconstruction performance of the sparse signal recovery. To this end, we propose a sparse signal reconstruction method by pruning-based tree search, which attempts to choose the globally-optimal solution by minimizing the cost function. In order to achieve low complexity for the real-time implementation, we employ a novel pruning strategy to avoid exhaustive tree search. Through the restricted isometry property (RIP)-based analysis, we show that the exact recovery condition of our approach is more relaxed than any of the existing methods. Through the simulations, we demonstrate that the proposed approach outperforms the existing sparse recovery methods for ECG reconstruction.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer