Abstract

Titanium dioxide (TiO2) nanoparticles (NPs) have been widely applied in various industrial fields, such as electronics, packaging, food, and cosmetics. Accordingly, concerns about the potential toxicity of TiO2 NPs have increased. In order to comprehend their in vivo behavior and potential toxicity, we must evaluate the interactions between TiO2 NPs and biomolecules, which can alter the physicochemical properties and the fate of NPs under physiological conditions. In the present study, in vivo solubility, oral absorption, tissue distribution, and excretion kinetics of food grade TiO2 (f-TiO2) NPs were evaluated following a single-dose oral administration to rats and were compared to those of general grade TiO2 (g-TiO2) NPs. The effect of the interactions between the TiO2 NPs and biomolecules, such as glucose and albumin, on oral absorption was also investigated, with the aim of determining the surface interactions between them. The intestinal transport pathway was also assessed using 3-dimensional culture systems. The results demonstrate that slightly higher oral absorption of f-TiO2 NPs compared to g-TiO2 NPs could be related to their intestinal transport mechanism by microfold (M) cells, however, most of the NPs were eliminated through the feces. Moreover, the biokinetics of f-TiO2 NPs was highly dependent on their interaction with biomolecules, and the dispersibility was affected by modified surface chemistry.

Details

Title
Titanium Dioxide Nanoparticle-Biomolecule Interactions Influence Oral Absorption
Author
Jo, Mi-Rae; Yu, Jin; Kim, Hyoung-Jun; Song, Jae Ho; Kim, Kyoung-Min; Oh, Jae-Min; Choi, Soo-Jin
First page
225
Publication year
2016
Publication date
2016
Publisher
MDPI AG
e-ISSN
20794991
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1862970260
Copyright
Copyright MDPI AG 2016