It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Diffusion Tensor Magnetic Resonance Imaging (DT-MRI, also known as DTI) measures the diffusion properties of water molecules in tissues and to date is one of the main techniques that can effectively study the microstructures of the brain in vivo. Presently, evaluation of DTI registration techniques is still in an initial stage of development.
Methods and results
In this paper, six well-known open source DTI registration algorithms: Elastic, Rigid, Affine, DTI-TK, FSL and SyN were applied on 11 subjects from an open-access dataset, among which one was randomly chosen as the template. Eight different fiber bundles of 10 subjects and the template were obtained by drawing regions of interest (ROIs) around various structures using deterministic streamline tractography. The performances of the registration algorithms were evaluated by computing the distances and intersection angles between fiber tracts, as well as the fractional anisotropy (FA) profiles along the fiber tracts. Also, the mean squared error (MSE) and the residual MSE (RMSE) of fibers originating from the registered subjects and the template were calculated to assess the registration algorithm. Twenty-seven different fiber bundles of the 10 subjects and template were obtained by drawing ROIs around various structures using probabilistic tractography. The performances of registration algorithms on this second tractography method were evaluated by computing the spatial correlation similarity of the fibers between subjects as well as between each subject and the template.
Conclusion
All experimental results indicated that DTI-TK performed the best under the study conditions, and SyN ranked just behind it.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer