Full text

Turn on search term navigation

© 2017 Konstantinova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents experimental evidence for the existence of a set of unique force modulation strategies during manual soft tissue palpation to locate hard abnormalities such as tumors. We explore the active probing strategies of defined local areas and outline the role of force control. In addition, we investigate whether the applied force depends on the non-homogeneity of the soft tissue. Experimental results on manual palpation of soft silicone phantoms show that humans have a well defined force control pattern of probing that is used independently of the non-homogeneity of the soft tissue. We observed that the modulations of lateral forces are distributed around the mean frequency of 22.3 Hz. Furthermore, we found that the applied normal pressure during probing can be modeled using a second order reactive autoregressive model. These mathematical abstractions were implemented and validated for the autonomous palpation for different stiffness parameters using a robotic probe with a rigid spherical indentation tip. The results show that the autonomous robotic palpation strategy abstracted from human demonstrations is capable of not only detecting the embedded nodules, but also enhancing the stiffness perception compared to static indentation of the probe.

Details

Title
Palpation force modulation strategies to identify hard regions in soft tissue organs
Author
Konstantinova, Jelizaveta; Cotugno, Giuseppe; Dasgupta, Prokar; Althoefer, Kaspar; Nanayakkara, Thrishantha
First page
e0171706
Section
Research Article
Publication year
2017
Publication date
Feb 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1868615497
Copyright
© 2017 Konstantinova et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.