Full Text

Turn on search term navigation

Copyright Nature Publishing Group Feb 2017

Abstract

DNA-based molecular circuits allow autonomous signal processing, but their actuation has relied mostly on RNA/DNA-based inputs, limiting their application in synthetic biology, biomedicine and molecular diagnostics. Here we introduce a generic method to translate the presence of an antibody into a unique DNA strand, enabling the use of antibodies as specific inputs for DNA-based molecular computing. Our approach, antibody-templated strand exchange (ATSE), uses the characteristic bivalent architecture of antibodies to promote DNA-strand exchange reactions both thermodynamically and kinetically. Detailed characterization of the ATSE reaction allowed the establishment of a comprehensive model that describes the kinetics and thermodynamics of ATSE as a function of toehold length, antibody-epitope affinity and concentration. ATSE enables the introduction of complex signal processing in antibody-based diagnostics, as demonstrated here by constructing molecular circuits for multiplex antibody detection, integration of multiple antibody inputs using logic gates and actuation of enzymes and DNAzymes for signal amplification.

Details

Title
Antibody-controlled actuation of DNA-based molecular circuits
Author
Engelen, Wouter; Meijer, Lenny H H; Somers, Bram; De Greef, Tom F A; Merkx, Maarten
Pages
14473
Publication year
2017
Publication date
Feb 2017
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1869030054
Copyright
Copyright Nature Publishing Group Feb 2017