OPEN
Citation: Transl Psychiatry (2017) 7, e1022; doi:http://dx.doi.org/10.1038/tp.2016.280
Web End =10.1038/tp.2016.280
http://www.nature.com/tp
Web End =www.nature.com/tp
ORIGINAL ARTICLE
Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models
M Cacciottolo1, X Wang2, I Driscoll3, N Woodward1, A Saffari4, J Reyes5, ML Serre5, W Vizuete5, C Sioutas4, TE Morgan1, M Gatz6,7, HC Chui7,8, SA Shumaker9, SM Resnick10, MA Espeland11, CE Finch1,7 and JC Chen2,7
Exposure to particulate matter (PM) in the ambient air and its interactions with APOE alleles may contribute to the acceleration of brain aging and the pathogenesis of Alzheimers disease (AD). Neurodegenerative effects of particulate air pollutants were examined in a US-wide cohort of older women from the Womens Health Initiative Memory Study (WHIMS) and in experimental mouse models. Residing in places with ne PM exceeding EPA standards increased the risks for global cognitive decline and all-cause dementia respectively by 81 and 92%, with stronger adverse effects in APOE 4/4 carriers. Female EFAD transgenic mice (5xFAD+//human APOE 3 or 4+/+) with 225 h exposure to urban nanosized PM (nPM) over 15 weeks showed increased cerebral -amyloid by thioavin S for brillary amyloid and by immunocytochemistry for A deposits, both exacerbated by APOE 4. Moreover, nPM exposure increased A oligomers, caused selective atrophy of hippocampal CA1 neurites, and decreased the glutamate GluR1 subunit. Wildtype C57BL/6 female mice also showed nPM-induced CA1 atrophy and GluR1 decrease. In vitro nPM exposure of neuroblastoma cells (N2a-APP/swe) increased the pro-amyloidogenic processing of the amyloid precursor protein (APP). We suggest that airborne PM exposure promotes pathological brain aging in older women, with potentially a greater impact in 4 carriers. The underlying mechanisms may involve increased cerebral A production and selective changes in hippocampal
CA1 neurons and glutamate receptor subunits.
Translational Psychiatry (2017) 7, e1022; doi:http://dx.doi.org/10.1038/tp.2016.280
Web End =10.1038/tp.2016.280 ; published online 31 January 2017
INTRODUCTIONEnvironmental inuences on Alzheimers disease (AD) and related dementias (ADRD) are poorly documented.1 Apolipoprotein E (APOE) 4 and other loci identied by large GWAS account for less than 50% of heritable AD risk.2 Thus, attention is drawn to environmental risk factors, including common neurotoxins and their interactions with APOE and other genes.2,3
Ambient ne particles (PM2.5: particulate matter (PM) with aerodynamic diameterso2.5 m) from trafc emissions are a major source of urban air pollution, accounting globally for 25% of ambient PM2.5.4 Epidemiologic evidence associates cognitive decits with PM2.5 exposure among the elderly.5 Rodent models also show long-term neurotoxic effects of air pollutants, including memory impairment6 and selective atrophy of CA1 hippocampal neurons observed in pre-clinical AD;7 decreased glutamate receptor subunit GluR1;8 and increased endogenous soluble A.911 However, we lack prospective studies of PM exposure on ADRD risk and interaction with APOE alleles.
We hypothesized that long-term PM2.5 exposure increases the risk for accelerated global cognitive decline and dementia, further exacerbated by APOE 4. These hypotheses were tested within the Womens Health Initiative Memory Study (WHIMS), a well-characterized, nationwide prospective cohort of older US women, for which we recently reported associations between elevated PM2.5 and smaller white matter volumes in multiple brain regions.12 Neurotoxic effects of PM were studied with transgenic mice (EFAD) carrying human APOE alleles and familial AD genes13,14 which model pre-clinical accumulations of A amyloid and its exacerbation in APOE 4 carriers.13,15,16 We focused on
female mice, because 4 confers a greater AD risk in women than in men15 and because women also incur worse cardiopulmonary17 and neurological18 consequences from residential exposure to ambient PM.17 To model the human subpopulation with low to negligible A plaque and without familial AD genes, we examined C57BL/6J mice (wildtype), which do not develop amyloid aggregates at any age, because murine A differs from the human in 3 residues that reduce its aggregation.19 Nonetheless,
1Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA; 2Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; 3Department of Psychology, University of Wisconsin, Milwaukee, WI, USA; 4USC Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA; 5Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 6Department of Psychology, University of Southern California, Los Angeles, CA, USA; 7Memory and Aging Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; 8Department of Neurology, Keck School of Medicine, University of Southern California,, Los Angeles, CA, USA; 9Department of Social Sciences and Health Policy, Wake Forest School of Medicine, Winston-Salem, NC, USA; 10Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA and 11Division of Public Health Services, Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, NC, USA. Correspondence: Dr CE Finch, University of Southern California, Davis School of Gerontology, 3715 McClintock Avenue GERO 336, Los Angeles, CA 90089-0191, USA or Dr JC Chen, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, 2001N Soto Street SSB 225P, M/C 9237 Los Angeles, CA 90089-9237, USA. E-mail: mailto:[email protected]
Web End [email protected] or mailto:[email protected]
Web End [email protected] Received 21 November 2016; accepted 27 November 2016
Ambient particles accelerate neurodegenerative processes of AD M Cacciottolo et al
2
sAPP, derived from the endogenous amyloid precursor protein (APP), modulates synaptic remodeling.20,21 We also examined
responses of mouse neuroblastoma N2a cells expressing Swedish mutant APP (N2a-APP/swe) to in vitro nPM as a model for direct effects of PM on APP processing.
MATERIALS AND METHODS The neuroepidemiologic study
WHIMS participants were community-dwelling (495% in urban areas) across 48 states, aged 65 to 79 years, and free of dementia when enrolled, 19951999. Of 4504 with APOE genotypes, we excluded 717 with 2/2, 2/3 or 2/4 allele plus 140 with missing PM2.5 data. The remainder of 3647 older women with APOE alleles 3/3 (n = 2644), 3/4 (n = 922) or 4/4 (n = 81), were of European ancestry (primarily non-Hispanic whites) and had complete PM2.5 exposure estimates. The standardized WHIMS outcome ascertainment protocols22 consisted of annual screening of global cognitive function, neuropsychological and functional assessment, with clinical data to exclude possible reversible causes of cognitive impairment (Supplementary Material), all concluded with the nal classication of dementia (vs non-demented) by central adjudication blind to estimated PM2.5 exposure. Accelerated decline in global cognitive function was dened by an 8-point (~2 s.e.) loss in Modied Mini-Mental State (3MS)23 during two consecutive assessments. Decrease of 3MS by 5 10 points was considered a clinically signicant decline in global cognitive functions.24
Using the Bayesian Maximum Entropy method (Supplementary Information), we constructed spatiotemporal models to estimate the ambient concentration of PM2.5 at all WHIMS residential locations in 1999
2010.25 This method integrates nationwide monitoring data from the U.S. EPA Air Quality System (AQS) and the output of chemical transport models to characterize spatiotemporal interdependence of environmental data to estimate mean trends and covariance of the air pollution elds over space and time. The resulting BME estimates of daily PM2.5 exposures correlated with levels recorded at local AQS monitoring sites (cross-validation Pearsons r2 = 0.70). This statistically-validated BME model was applied to each geocoded residential location to generate a yearly time-series of PM2.5 exposure, and then combined with residential histories including relocations to calculate the 3-year moving average PM2.5 exposures.
Statistical analysisWe conducted time-to-event analyses to examine associations between long-term residential exposure to PM2.5 and adverse neurocognitive outcomes. Cox proportional hazard models were used to estimate hazard ratios (HRs) and 95% condence intervals (CIs) for adverse events associated with estimated time-varying 3-year average PM2.5 exposures, adjusting for potential confounders, including age, geographic region, education, income, employment status, lifestyle factors (smoking; alcohol use; physical activities) and clinical characteristics (use of hormone treatment; depression; body mass index; hypercholesterolemia; hypertension, diabetes; and histories of cardiovascular disease). Characterization of these covariates and rationale for their selection were given in the Supplementary Information. Follow-up time for each woman was calculated from WHI randomization (baseline) to the screening date triggering the ultimate classication of dened outcome end points, or the last date of completing annual cognitive assessment before 31 December 2010, whichever came rst. Data on global cognitive decline and incidence of dementia were analyzed separately. For analyses of global cognitive decline, dementia cases were excluded if ascertained before subjects lost 8 points on 3MS. We used time on study as the timescale in the constructed Cox regression models, because simulation studies suggested that such approaches were less subject to potential biases in estimating effects of environmental factors (for example, PM exposures) with prominent secular trends,26 as compared with the other alternatives (for example, attained age; calendar time). The assumed proportional hazards of Cox models were supported by the proportionality test based on weighted residuals.27 To
evaluate the effect measure modication, we further stratied the effect estimates by examining whether the putative neurotoxic effects differed by APOE alleles, by Wald tests of interaction. Statistical analyses used SAS System for Windows, Version 9.3 (SAS Institute, Cary, NC, USA).
The institutional review boards of all institutes involved in the air pollution neuroepidemiologic study and its parent projects
approved the established protocols of human subject protection and informed consent.
Mouse experimentsAnimals. EFAD mice carrying transgenes for human APOE 3 or 4 alleles in combination with ve familial AD mutations (5xFAD+//human APOE+/+) (APP K670N/M671L+ I716V+ V717I and PS1 M146L+L286V)13 were
generously given by Dr Mary Jo LaDu (University of Illinois, Chicago, IL, USA). Experimental logistics limited the exposure study to 20 female mice: 10 per group of E3- and E4FAD, were randomly assigned to either nPM exposure or control air for 15 weeks. One E3FAD control died during the experiment. As a model for the human subpopulation with low to negligible A plaque and without AD genes, we exposed wild-type C57BL/ 6J females (n = 18) to nPM for 10 weeks corresponding to our prior study of wild-type male mice.8 The 15-week exposure for EFAD was chosen to initiate exposure at 2 months, corresponding to the onset of A deposition,13 with brains collected at age of 7 months, the same age in our initial study.8 Data analysis was blinded for nPM and genotype. Mouse husbandry and procedures were approved by the University of Southern California Institutional Animal Care and Use Committee.
Experimental exposures. A nano-scale subfraction of urban PM2.5,
designated as nPM8 with well-characterized particle size and chemical composition,8,28 was used for in vivo and in vitro exposure. Female mice
were randomly assigned to nPM or ltered air (control), 5 h per day, 3 days per week, delivered to the sealed exposure chambers. For timelines of exposures see Supplementary Figure 1.
Tissue collection. Mice were killed by isourane anesthesia and perfused transcardially with phosphate-buffered saline. Brains were hemi-sected for sagittal sectioning 0.52 mM from midline. Brains were xed in 4% paraformaldehyde, cryoprotected in sucrose and frozen on dry ice. The other hemisphere was chilled and dissected (hippocampus and cerebral cortex) and frozen on dry ice.
Oligomeric A ELISA. A peptides were assayed in brain supernates.15
Cerebral half-cortexes were homogenized in DEA buffer (0.2% diethyla-mine, 50 mM NaCl; 1 ml per 200 mg tissue) with Complete Protease Inhibitor (Sigma, St. Louis, MO, USA). After centrifugation (20 800 g 30 min), supernatants were neutralized with Tris-HCl, pH 6.2. Oligomeric A was assayed by MOAB-2 ELISA kit (BEK-2215-1P, Biosensis, Thebarton, SA, Australia).
A Immunohistochemistry (4G8). A amyloid was immunostained with 4G8 antibody (residues 1724 at N-terminal of APP, SIG-39220, Covance, Princeton, NJ, USA).15 Briey, sections were immersed in 70% formic acid/ 5 min. Endogenous peroxidases were blocked by 3% H2O2 and 10%
methanol in TRIS-buffered saline (TBS), 30 min/22 C. Sections were permeabilized in 0.1% Triton X-100/15 min, blocked by 30 min incubation in TBS with 2% BSA and 0.1% Triton, and probed with primary antibodies. After 0.1% Triton and TBS rinses, sections were incubated with biotinylated anti-mouse secondary antibodies (1:250) for 1 h, followed by ABC peroxidase and 3,3'-diaminobenzidine (DAB; Vector, Burlingame, CA, USA). Bright-eld microscope images were converted to 8-bit grayscale and thresholded to highlight plaques and to diminish background. The objects identied were inspected individually to conrm plaque identity. The cerebral cortex in each image was outlined for analysis by analyze particles function in NIH ImageJ software. A plaque load was evaluated as % area covered by 4G8-stained plaques.
Thioavin S staining. Sections were air-dried, rehydrated in Milli-Qwater for 2 min and stained in 0.1% thioavin S (ThioS) (in 50% ethanol-phosphate-buffered saline) for 5 min in the dark. Sections were destained twice for 5 min in 80% EtOH in the dark and mounted with Fluoromount Aqueous (Sigma Aldrich, St. Louis, MO, USA). Amyloid load was quantied as above for 4G8 immunostaining.
Silver staining. Silver staining Bielschowsky technique was used to assess neuropil density.29 Sections were dried at room temperature and briey washed in distilled water before preimpregnation. Sections were incubated in preheated 20% (1.0 M) silver nitrate at 37 C/15 min, washed 3 in distilled water, and incubated in ammoniacal silver solution (20% silver nitrate in 148 mM ammonia water) for 10 min at 37 C. Sections were developed for 3 min (8% formaldehyde, 1% nitric acid, 26 mM citric acid,
Translational Psychiatry (2017), 1 8
Ambient particles accelerate neurodegenerative processes of AD M Cacciottolo et al
3
diluted 1:50 in ammonia water), followed by washing in ammonia water and distilled water to reduce background. Slides were then placed in 5% sodium thiosulfate solution for 2 min, rinsed 5 in distilled water, dehydrated, cleared and mounted. Bright-eld images of CA1, CA2/3 and dentate gyrus region, were analyzed by NIH ImageJ software. Images were converted to 8-bit grayscale, thresholded for binary separation of neuronal cell bodies (dark round objects) from neurites and neurite density calculated as percentage of positive staining in area of interest.
Immunoblotting. Hippocampus was homogenized by motor-driven pestle in cold RIPA buffer (20188, Millipore, Temecula, CA, USA) and centrifuged 5 min/20 000 g. Supernate protein (20 g) was electro-phoresed on 10% SDS polyacrylamide gels and transferred to polyvinylidene uoride membranes. The polyvinylidene uoride membranes were blocked with 5% BSA for 1 h and probed with primary antibodies overnight at 4 C: anti-GluR1 (glutamate receptor subunit 1; 1:3000, AB31232, rabbit; Abcam, Cambridge, MA, USA), anti-GluR2 (glutamate receptor subunit 2; 1:2000, AB1768, rabbit; Millipore), anti-NR2A (NMDA receptor, subunit 2A, 1:1000, 07-632, rabbit; Millipore), anti-NR2B (NMDA receptor, subunit 2B, 1:1000, 06-600, rabbit; Millipore) anti-PSD95 (1:1000, AB2723, mouse; Abcam), anti-synaptophysin (1:5000, MAB368, mouse; Stressgene; Enzo, Plymouth Meeting, PA, USA), and anti-NueN (loading control; 1:1000, MAB377, mouse, Millipore). After washing, membranes were probed with secondary antibodies conjugated with IRDye 680 (92632210, rabbit, LI-COR Biosciences, Lincoln, NE, USA) and IRDye 800 (92632210, mouse, LI-COR). Signal was detected by infrared imaging (Odyssey, LI-COR).
In vitro nPM exposure and APP/A measurements. Mouse neuroblastoma N2a cells expressing Swedish mutant APP (K595N/M596L) (N2a-APP/swe) were generously gifted by Dr Huaxi Xu (Sanford/Burnham Medical Research Institute, La Jolla, CA, USA) and tested for mycoplasma contamination before use. Cells were treated with nPM (10 g ml1) in culture media (Optimem/DMEM medium, 5% FBS, 500 g ml1 G418) for 24 h. RIPA buffer cell lysates were probed with 22C11 antibody (1:100, Millipore), which recognizes both sAPP and sAPP. Media were analyzed for A42 by MSD Multiplex ELISA (Meso Scale Discovery, Rockville, MD, USA). Three independent experiments were performed, with three sample replicates each.
Statistical analyses. For the statistical analyses examining the putative effects on continuous response variables, we used multiple linear regression analysis in STATA14, including both nPM exposure and APOE genotype. We also conducted subgroup data analyses on nPM exposure effect, stratied by genotype. Silver staining analysis used repeated measurements of a clustered linear regression. All two-sided tests of statistical signicance were set at Po0.05.
RESULTSThe neuroepidemiologic studyWomen in the highest PM2.5 quartile (14.3422.55 g m3) were older (aged 75 years); more likely to reside in the South/Midwest and use hormonal treatment; but engage less in physical activities and consume less alcohol, relative to counterparts (all P-valueso0.05; Supplementary Table S1). PM2.5 exposure estimates did not differ by APOE genotype. There were 173 subjects classied as incident cases of all-cause dementia over an average follow-up of 9.9 years and 329 had global cognitive decline (including 87 cases subsequently classied as or progressing to all-cause-dementia) over an average follow-up of 8.3 years. The observed incidence rates of accelerated global cognitive decline and all-cause dementia differed signicantly by APOE genotype (both Po0.001 with 4/443/443/3 by log-rank test).
Associations between PM2.5 exposure and adverse events. The 3-year average exposure preceding the incident event time was a priori classied as high if exceeding the current National Ambient Air Quality Standards (NAAQS) for PM2.5 (412 g m3).30
Residence in high PM2.5 locations was associated with increased risks of global cognitive decline and all-cause dementia. These adverse PM2.5 effects were exacerbated among women of 4/4
(Figure 1; Supplementary Table S2). For residence in locations with high PM2.5 at any time during 19992000, the hazard ratio (HR) for accelerated global cognitive decline and all-cause dementia were increased by 81% and 92%, respectively (Figure 1). These adverse PM2.5 effects varied by APOE allele, with 3/3o3/4o4/4 for both global cognitive decline (3/3: HR = 1.65; 3/4: HR = 1.93; 4/4: HR = 3.95) and all-cause dementia (3/3: HR = 1.68; 3/4: HR = 1.91; 4/4: HR = 2.95).
Mouse experimental studiesFemale EFAD mice (5xFAD+//human APOE 3/3/ or 4/4) were chronically exposed to nPM during 15 weeks. We observed increased amyloid deposits as brillar amyloid by ThioS binding and by 4G8 plaque immunohistochemistry that were greater for E4FAD mice than E3FAD. For ThioS, nPM exposure increased amyloid load by +60% in E4FAD above non-exposed controls (P = 0.048), whereas E3FAD did not respond (P = 0.79; Figure 2a). For 4G8, nPM exposure in E4FAD increased A plaque load by +30% above controls (P = 0.04; Figure 2b); its effect size was 2.8-fold greater than for E3FAD (Supplementary Table S3). Levels of ThioS and 4G8 were highly correlated (r2 = 0.78, Po0.0001;
Supplementary Figure 2).
A oligomers were increased by nPM for both APOE alleles, with an overall nPM effect (P = 0.0001; Figure 2c): +15% in E4FAD mice (P = 0.03) and +60% in E3FAD (P = 0.07).
The increased amyloid from nPM exposure suggests direct effects of nPM on APP processing. As an acute in vitro model, mouse neuroblastoma cells (N2a-APP/Swe) were exposed to nPM; pro-amyloidogenic APP processing was assessed as the ratio (sAPP/) of soluble fragments from -secretase (sAPP, proamyloidogenic) and -secretase (sAPP, non-amyloidogenic). nPM increased the sAPP/ ratio by 35% (P = 0.02, Figure 2d), with 2-fold increase of A42 peptide (Po0.001, Figure 2e).
Neuronal consequences of the elevated A and sAPP/ ratio include synaptic remodeling20 and effects of A on glutamate receptors.31 The hippocampus of female EFAD and C57BL/6 mice showed selective neuronal atrophy in response to nPM, which was restricted to CA1 hippocampal neurons (Figure 3a-d): E3FAD (45%, P = 0.03) and C57BL/6 (25%, P = 0.003), without CA2/3 layer or dentate gyrus (Figure 3d, Supplementary Table S3).
Synaptic proteins that mediate hippocampal-based memory were analyzed in whole hippocampus extracts. The nPM exposure decreased GluR1 protein by 25% in E3FAD (P = 0.01), 35% in E4FAD (P = 0.01) and 40% in C57BL/6J (Po0.002; Figure 4a).
No changes were detected in other glutamatergic receptor subunits (GluR2, NR2A and NR2B; Figure 4bd) or other synaptic proteins (pre-synaptic: synaptophysin; post-synaptic: PSD95; Supplementary Figure 3).
DISCUSSIONOur data combine an air pollution-neuroepidemiologic study of older women and inhalation neurotoxicological experiments with mice. Together, we show the contribution of particulate air pollutants to neurodegenerative changes, with potentially a greater impact on APOE 4 carriers. Overall, the evidence supports the schema that airborne PM accelerates neurodegenerative processes of ADRD through multiple pathways, including proamyloidogenic APP processing and other pathways independent of amyloid deposits.
In the geographically diverse WHIMS cohort, increased risks for both all-cause dementia and clinically signicant declines in global cognitive function (with 48-point loss in 3MS scores) were associated with residential exposure to high levels of ambient PM2.5. In female EFAD mice, the chronic exposure to nPM, a neurotoxic subfraction of PM2.5, increased both the cerebral A-amyloid plaque load and neurotoxic A oligomers. Mice
Translational Psychiatry (2017), 1 8
Ambient particles accelerate neurodegenerative processes of AD M Cacciottolo et al
4
Figure 1. Adverse effects of PM2.5 exposure on cognitive impairment in older women, stratied by APOE alleles. Horizontal bars represent the effect measures (hazard ratios (HRs) and 95% condence intervals) estimated from the Cox proportional hazard models, comparing high (exceeding the US National Ambient Air Quality Standard with 3-year averages PM2.5412 g m3) versus low exposure for their associated incidence rates of global cognitive decline (a) and all-cause dementia (b), stratied by APOE alleles (3/3 vs 3/4 vs 4/4). The dotted vertical lines denote no statistically signicant adverse effects (with HR = 1). The presented crude estimates were adjusted for APOE alleles. The adjusted estimates further accounted for age, geographic region, spatial random effect, years of education, household income, employment status, lifestyle factors (smoking; alcohol use; physical activities) and clinical characteristics (use of hormone treatment; depression; body mass index; hypercholesterolemia; hypertension, diabetes; and histories of cardiovascular disease). At any time during 19992010, if older women were residing at locations with high PM2.5, their hazards for accelerated global cognitive decline and all-cause dementia respectively would be 81% (HR = 1.81; 1.422.32) and 92% (HR = 1.92; 1.322.80) greater than if they had low exposure. This increase in hazard for all-cause dementia associated with high PM2.5 exposure was 68% (HR = 1.68; 0.972.92), 91% (HR = 1.91; 1.173.14), and 295% (HR = 3.95; 1.1813.19), respectively, in 3/3, 3/4, and 4/4 carriers. High PM2.5 exposure also increase the hazard for global cognitive decline by 65% (HR = 1.65; 1.232.23), 93%
(HR = 1.93; 1.292.90), and 264% (HR = 3.64; 1.369.69) in women of 3/3, 3/4, and 4/4 alleles.
carrying 4 had more nPM-induced A-amyloid plaque. These experimental data are consistent with our epidemiologic observation of stronger associations between PM2.5 exposure and increased risks for dementia and global cognitive decline in women homozygous for APOE 4 vs 3. These ndings provide the rst experimental evidence for gene-environment interactions involving airborne PM and APOE in neurodegenerative processes.
Our study of the WHIMS cohort provides new evidence for late-life exposure to PM2.5 as a common environmental risk factor for
ADRD. Previous studies showed older adults living in areas with higher ambient PM2.5 had lower performance in various cognitive functions32,33 and accelerated cognitive aging.34,35 However, unlike our dened global decline (48-point loss in 3MS), the clinical signicance was unclear for these reported cognitive decits associated with air pollution exposure. Five studies that reported associations of ADRD with exposure to ambient air pollution3640 had notable methodological limitations. Three of these studies3941 used claims data to determine incident dementia/AD (an approach with questionable validity42) and
included only aggregated exposures prone to ecological biases. Four studies36,3941 were retrospective and subject to selection biases.43 The only prospective cohort study37 employed a spatial model towards the end of study follow-up to estimate the NOx exposure in earlier years, which obscured the temporality of the reported association. Our study within the prospective WHIMS cohort used the incident dementia cases adjudicated with well-
validated protocols and a sophisticated spatiotemporal model to estimate residence-specic exposure to ambient PM2.5 preceding the ascertained end points. The comprehensive list of covariates data (including APOE genotype) allowed us to carefully assess and adjust for potential confounding. These observed neurodegenerative effects of PM2.5 (with the relative risk for global cognitive decline and all-cause dementia, respectively, increased by 81% and 92%) were not explained by differences in socioeconomic status, lifestyle, vascular risk factors and APOE alleles. The average PM2.5 concentrations have decreased over time in the US (for example, 34% reduction in 20002013), which coincided with decreased age-specic risk for dementia.44 Assuming 30% of older women in the US were residing in locations with high PM2.5 before
the US EPA set its current US NAAQS standard ambient PM2.5 in
2012, if the observed adverse effects in WHIMS were general-izable, we estimate that ~ 21% of accelerated cognitive decline and all-cause dementia are attributable to residential exposure to high ambient PM2.5.45
The experimental ndings with EFAD and C57BL/6J mice suggest possible mechanisms for the PM-associated cognitive impairment observed in the WHIMS cohort. We show that nPM exposure of EFAD mice increased brillary amyloid and A plaque and soluble oligomeric A, together with neuronal changes in hippocampus (discussed below). These are the rst studies on the neurotoxicity of airborne particles using transgenic mice carrying human APOE alleles and familial AD genes. Three reports of wild-
Translational Psychiatry (2017), 1 8
Ambient particles accelerate neurodegenerative processes of AD M Cacciottolo et al
5
Figure 2. In vivo and in vitro nPM exposure on A levels. (a,b) In vivo nPM exposure of female EFAD mice (N = 5 mice per experimental group). (ac). Cerebral cortex sagittal sections were analyzed for A plaque load using two independent staining: (a) Thioavin S, (b) 4G8 antibody.
Both reagents showed responses to nPM in E4FAD mice but not in E3FAD. For Thioavin S, E3FAD coeff, 0.09, P = 0.79; E4FAD, coeff 1.06, P = 0.048. E4FAD mice had 2.8-fold greater increased total plaque load after nPM than E3FAD mice (E3FAD coeff, 0.49, P = 0.27; E4FAD, coeff1.39, P = 0.04). (c) A oligomers in soluble extracts of cerebral cortex were increased by nPM exposure in E4FAD mice (coeff 0.03, P = 0.03), with trend of increase in E3FAD (coeff 0.07, P = 0.07). (d,e) In vitro nPM exposure (N2a-APP/swe cells). Cells exposed to 10 g ml1 nPM for 24 h showed 35% increased sAPP/ ratio (P = 0.02). Culture media A42 levels increased twofold (Po0.001). White bar, control; black bar, nPM exposed. Mean s.e. *Po0.05, ***Po0.0001.
type rodents, including two with exposure to diesel particles9,10
and one with concentrated ambient PM2.5,11 showed increased
endogenous soluble A in cerebral cortex. We also introduce an in vitro model for PM effects on APP processing. In vitro nPM short-term exposure of neuronal N2a-APP/Swe cells enhanced proamyloidogenic APP processing, with increased sAPP/ ratio and A42 production. This nding concurs with the rapid rise of brain A4042 in wild-type mice exposed to nickel-PM enriched ambient air.46 In EFAD mice, A plaques begin to form in cerebral cortex by 2 months,13 which models the pre-clinical accumulation of A plaque in humans. We showed that nPM exposure increased both plaque formation and neurotoxic A oligomers in cerebral cortex at 7 months (approximately equivalent to 35 years of human age, approaching peri-menopause). This implies that A-dependent neurodegenerative processes in women with increased long-term PM exposure may precede cognitive declines or diagnosis of dementia, which is consistent with neuroimaging evidence for A deposition even among cognitively intact individuals in their 5060s.47
Importantly, nPM-exposed EFAD mice showed selective neuritic changes that parallel human AD, with selective atrophy of hippocampal CA1 neurons, but not of neighboring neurons of the same memory circuit.7 The nPM exposure also decreased the GluR1 subunit of glutamatergic synapses for both APOE alleles. Female wild-type C57BL/6 mice also showed selective CA1
atrophy with decreased GluR1, extending our prior ndings of GluR1 with male C57BL/6J mice.8 Together, these results suggest that the nPM-associated early neurodegenerative changes in hippocampus may occur to a broader population regardless of underlying genetic risks.
The CA1 neurite atrophy in female C57BL/6J mice after 10 weeks of nPM exposure corroborates dendritic spine loss in CA1 neurons of male C57BL/6 mice exposed to concentrated ambient PM2.5 for
10 months shown by others.6 Thus, the selective vulnerability of CA1 neurons to airborne PM does not depend on the presence of human A. As noted in the Introduction, wild-type murine sAPP, derived from the endogenous mouse APP, modulates synaptic remodeling.20,21 The selective CA1 attrition by PM exposure without A accumulation implies that PM exposure before older ages could contribute to accelerated cognitive decline and increased AD risk in late life by reducing the CA1 synapses, possibly via direct interactions of A oligomers with glutamatergic neurons.31 Moreover, the nPM-driven increase of sAPP/ implies decits of the neurotrophic sAPP, which can rescue decits of synaptic plasticity (LTP) in CA1 neurons of APP-knockout mice.20,21
Given the growing literature linking air pollution with cognitive decits across the life course, the selective neurotoxic effects on CA1 neurons underscores the possibility that PM exposure may differentially damage the medial temporal lobe-hippocampus memory system,48 a vulnerable neural network in both
Translational Psychiatry (2017), 1 8
Ambient particles accelerate neurodegenerative processes of AD M Cacciottolo et al
6
Figure 3. In vivo nanosized particulate matter (nPM) exposure decreased hippocampal CA1 neurite density. (ad) Silver histochemistry for neurodegeneration in hippocampal subregions CA1 pyramidal neuron layer and dentate gyrus (DG). EFAD mice, N = 5 mice per group; B6 mice, N = 9 mice/group. (a) Whole hippocampus; scale bar, 500 m. (b) Hippocampal subregions: scale bar, 100 m; left panel: CA1, Nissl-stained CA1 neuron layer; center, detail of silver staining from Figure 3a to show neurites; right, density ltered to resolve neurites. (c, d) nPM caused decreased neurite density in CA1 neurons of EFAD and wild-type mice (C57BL/6J) without affecting dentate gyrus neurons. Overall nPM effects on CA1, combining E3FAD and E4FAD, was signicant (P = 0.02, adjusting for genetic effect): E3FAD (coeff = 0.09, P = 0.03); C57BL/6J, (coeff = 0.25 P = 0.003). White bar, control; black bar, nPM exposed. Mean s.e. *Po0.05, ***Po0.005.
Figure 4. Chronic nPM exposure of female EFAD and C57BL/6J mice alters the GluR1 receptor subunit, but not other synaptic proteins. (a) Hippocampus glutamatergic receptor protein subunit GluR1 was decreased by nPM in both E3FAD (coeff = 0.26, P = 0.01), E4FAD (coeff = 0.32, P = 0.01) and C57BL/6J (coeff = 0.42, P = 0.002) mice. (bd) GluR2, NR2A and NR2B were unchanged. White bar, control; black bar, nPM exposed. EFAD, N = 5 mice per experimental group; B57BL/6, N = 9 mice per experimental group. Mean s.e. **Po0.01, ***Po0.005.
brain aging and neurodegenerative disease.49 Neurotoxicological and neuroimaging studies also show white matter vulnerability to PM neurotoxicity.12,50,51 The WHIMS-MRI subcohort shows
associations between PM2.5 and smaller volumes of normal-
appearing white matter in frontal and temporal lobes.12,52 Total
hippocampal volume did not differ by PM2.5, but CA1 hippocam
pal subelds were not resolved. From a systems neurotoxicity perspective, these ndings suggest the hypothesis that
Translational Psychiatry (2017), 1 8
Ambient particles accelerate neurodegenerative processes of AD M Cacciottolo et al
7
was funded by Wyeth Pharmaceuticals, St Davids, PA, USA, and Wake Forest University. This study was supported by NIH awards R01AG033078, R01AG051521, R21AG040753, R21AG040683 and R00AG032361. This study was supported by awards to J.C. Chen (R01AG033078; RF1AG054068), to I. Driscoll (R00AG032361) and to C.E. Finch (R01AG051521, R21AG040753, R21AG040683, R21AG0500201 and by the Cure Alzheimers Fund). The research was also supported by the Southern California Environmental Health Sciences Center (5P30ES007048). We are grateful for dedicated efforts by all investigators and staff at the WHI and WHIMS clinical centers, and at the WHI & WHIMS clinical coordinating center:: https://www.whi.org/ researchers/Documents%20%20Write%20a%20Paper/WHI%20Investigator%20Short %20List.pdf.
airborne PM-induced pathological brain aging may be initiated by white matter neurodegeneration, with ensuing neuro-anatomical progression of AD from the entorhinal cortex in the medial temporal lobe to the hippocampus via the myelinated perforant path.53,54
Our epidemiologic and experimental ndings suggest that APOE 4 may increase susceptibility to the adverse effects of particulate air pollutants. We followed an expert-proposed framework combining epidemiologic and toxicological evidence to make causal inference,55 focusing on the comparison of PM effect sizes, rather than the interaction P-value, which can be misleading.56 The adverse effects of high ambient PM2.5 on global cognitive decline and dementia risk were several fold greater in APOE 4/4 than 3/3 carriers. Because APOE4 frequencies vary widely by populations,57 their potential interactions with spatially varying ambient PM exposure to accelerate pathological brain aging may explain the geographic disparities in dementia incidence.58 Possible interactions of air pollution exposure and APOE 4 on accelerated brain aging are also suggested by postmortem ndings from a study in Mexico,59 which lacked comparison with APOE 4 carriers residing in cleaner air. Neurocognitive effects of airborne particles interacting with APOE alleles were also reported for a cross-sectional study in older German women for their joint effect on constructional praxis.60
Interpretation is difcult because overall there were no associations across all tested domains (including episodic memory and executive function) and no adjustment for multiple comparisons. A recent casecontrol study in Taiwan reported an increased risk for AD associated with high ambient PM10, with the observed association not varying by APOE genes.36 This study was limited for its retrospective design prone to selection biases (for example, possible oversampling of 4 carriers in controls).
We recognize several limitations of our study. First, this study of older women may not be generalized to men. Second, our study examined the association with PM2.5 mass, but had no information on particle constituents, emission sources, or interactions with other pollutants. Although research on cardiopulmonary end points is beginning to include these complexities of PM exposures, such data are both costly and limited for nationwide cohorts. Third, the employed spatiotemporal models only allowed estimates of late-life exposure to PM2.5 after 1999. As air pollution levels have been declining over the past 20 years, long-term exposure, especially during mid- or earlier life, may impart a greater risk. Finally, male mice warrant study for nPM effects on amyloid processing.
In summary, we provide clear evidence that the hazards of particulate air pollutants for brain health extend to dementia risk in a US-wide sample of older women and give, we believe, the rst evidence from AD transgenic mice that exposure to urban airborne particulates can intensify amyloid accumulation and neurodegeneration. Moreover, these joint data from humans and mice provide the rst evidence that neurodegenerative effects of airborne PM may involve gene-environment interactions with APOE 4, the major genetic risk factor for pathological brain aging and AD. The association between PM2.5 exposure and increased dementia risk suggests that the global burden of disease attributable to PM2.5
pollution has been underestimated, especially in regions with large populations exposed to high ambient PM2.5.
CONFLICT OF INTEREST
The authors declare no conict of interest.
ACKNOWLEDGMENTS
The WHI program is funded by the National Heart, Lung, and Blood Institute (NIH) through contracts HHSN268201100046C, HHSN268201100001C, HHSN268201100002C, HHSN268201100003C, HHSN268201100004C and HHSN271201100004C. The WHIMS
REFERENCES
1 Selkoe DJ. Preventing Alzheimers disease. Science 2012; 337: 14881492.2 Farrer LA. Expanding the genomic roadmap of Alzheimers disease. Lancet Neurol 2015; 14: 783785.3 Dekosky ST, Gandy S. Environmental exposures and the risk for Alzheimer disease: can we identify the smoking guns? JAMA Neurol 2014; 71: 273275.4 Karagulian F, Belis CA, Dora CFC, Pruss-Ustun AM, Bonjour S, Adair-Rohani H et al. Contributions to cities ambient particulate matter (PM): A systematic review of local source contributions at global level. Atmos Environ 2015; 120: 475483.5 Block ML, Elder A, Auten RL, Bilbo SD, Chen H, Chen JC et al. The Outdoor Air Pollution and Brain Health Workshop. Neurotoxicology 2012; 33: 972984.6 Fonken LK, Xu X, Weil ZM, Chen G, Sun Q, Rajagopalan S et al. Air pollution impairs cognition, provokes depressive-like behaviors and alters hippocampal cytokine expression and morphology. Mol Psychiatry 2011; 16: 987995, 973.7 West MJ, Kawas CH, Stewart WF, Rudow GL, Troncoso JC. Hippocampal neurons in pre-clinical Alzheimers disease. Neurobiol Aging 2004; 25: 12051212.8 Morgan TE, Davis DA, Iwata N, Tanner JA, Snyder D, Ning Z et al. Glutamatergic neurons in rodent models respond to nanoscale particulate urban air pollutants in vivo and in vitro. Environ Health Perspect 2011; 119: 10031009.9 Durga M, Devasena T, Rajasekar A. Determination of LC and sub-chronic neurotoxicity of diesel exhaust nanoparticles. Environ Toxicol Pharmacol 2015; 40: 615625.10 Levesque S, Surace MJ, McDonald J, Block ML. Air pollution & the brain: Sub-chronic diesel exhaust exposure causes neuroinammation and elevates early markers of neurodegenerative disease. J Neuroinamm 2011; 8: 105.11 Bhatt DP, Puig KL, Gorr MW, Wold LE, Combs CK. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain. PLoS ONE 2015; 10: e0127102.12 Chen JC, Wang X, Wellenius GA, Serre ML, Driscoll I, Casanova R et al. Ambient air pollution and neurotoxicity on brain structure: Evidence from womens health initiative memory study. Ann Neurol 2015; 78: 466476.13 Youmans KL, Tai LM, Nwabuisi-Heath E, Jungbauer L, Kanekiyo T, Gan M et al. APOE4-specic changes in Abeta accumulation in a new transgenic mouse model of Alzheimer disease. The Journal of biological chemistry 2012; 287: 4177441786.14 Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with ve familial Alzheimers disease mutations: potential factors in amyloid plaque formation. J Neurosci 2006; 26: 1012910140.15 Cacciottolo M, Christensen A, Moser A, Liu J, Pike CJ, Smith C et al. The APOE4 allele shows opposite sex bias in microbleeds and Alzheimers disease of humans and mice. Neurobiology of aging 2016; 37: 4757.16 Liu DS, Pan XD, Zhang J, Shen H, Collins NC, Cole AM et al. APOE4 enhances age-dependent decline in cognitive function by down-regulating an NMDA receptor pathway in EFAD-Tg mice. Mol Neurodegener 2015; 10: 7.17 Clougherty JE. A growing role for gender analysis in air pollution epidemiology. Environ Health Perspect 2010; 118: 167176.18 Liu R, Young MT, Chen JC, Kaufman JD, Chen H. Ambient Air Pollution Exposures and Risk of Parkinson Disease. Environ Health Perspect 2016; 124: 17591765.19 Boyd-Kimball D, Sultana R, Mohmmad-Abdul H, Buttereld DA. Rodent Abeta(1-42) exhibits oxidative stress properties similar to those of human Abeta(1-42): Implications for proposed mechanisms of toxicity. J Alzheimers Dis 2004; 6: 515525.20 Hick M, Herrmann U, Weyer SW, Mallm JP, Tschape JA, Borgers M et al. Acute function of secreted amyloid precursor protein fragment APPsalpha in synaptic plasticity. Acta Neuropathol 2015; 129: 2137.21 Weyer SW, Zagrebelsky M, Herrmann U, Hick M, Ganss L, Gobbert J et al. Comparative analysis of single and combined APP/APLP knockouts reveals reduced spine density in APP-KO mice that is prevented by APPsalpha expression. Acta Neuropathol Commun 2014; 2: 36.22 Shumaker SA, Legault C, Kuller L, Rapp SR, Thal L, Lane DS et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Womens Health Initiative Memory Study. JAMA 2004; 291: 29472958.
Translational Psychiatry (2017), 1 8
Ambient particles accelerate neurodegenerative processes of AD M Cacciottolo et al
8
23 Teng EL, Chui HC. The Modied Mini-Mental State (3MS) examination. J Clin Psychiatry 1987; 48: 314318.
24 Rapp SR, Espeland MA, Shumaker SA, Henderson VW, Brunner RL, Manson JE et al. Effect of estrogen plus progestin on global cognitive function in postmenopausal women: the Womens Health Initiative Memory Study: a randomized controlled trial. JAMA 2003; 289: 26632672.
25 Christakos G, BP SMB. Temporal GIS: Advanced Functions for Field-based Applications. Springer: New York, 2001.
26 Grifn BA, Anderson GL, Shih RA, Whitsel EA. Use of alternative time scales in Cox proportional hazard models: implications for time-varying environmental exposures. Stat Med 2012; 31: 33203327.
27 Grambsch PM, Therneau TM. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 1994; 81: 515526.
28 Liu Q, Babadjouni R, Radwanski R, Cheng H, Patel A, Hodis DM et al. Stroke damage is exacerbated by nano-size particulate matter in a mouse model. PLoS ONE 2016; 11: e0153376.
29 de Olmos JS, Beltramino CA, de Olmos de Lorenzo S. Use of an amino-cupric-silver technique for the detection of early and semiacute neuronal degeneration caused by neurotoxicants, hypoxia, and physical trauma. Neurotoxicol Teratol 1994; 16: 545561.
30 Environmental Protection Agency (EPA). National Ambient Air Quality Standards for Particulate Matter; Proposed Rule, Vol. 77. Federal Register: Washington, DC, 2012, pp 3889039055.
31 Whitcomb DJ, Hogg EL, Regan P, Piers T, Narayan P, Whitehead G et al. Intra-cellular oligomeric amyloid-beta rapidly regulates GluA1 subunit of AMPA receptor in the hippocampus. Sci Rep 2015; 5: 10934.
32 Ailshire JA, Crimmins EM. Fine particulate matter air pollution and cognitive function among older US adults. Am J Epidemiol 2014; 180: 359366.
33 Gatto NM, Henderson VW, Hodis HN St, John JA, Lurmann F, Chen JC et al. Components of air pollution and cognitive function in middle-aged and older adults in Los Angeles. Neurotoxicology 2014; 40: 17.
34 Tonne C, Elbaz A, Beevers S, Singh-Manoux A. Trafc-related air pollution in relation to cognitive function in older adults. Epidemiology 2014; 25: 674681.
35 Weuve J, Puett RC, Schwartz J, Yanosky JD, Laden F, Grodstein F. Exposure to particulate air pollution and cognitive decline in older women. Arch Intern Med 2012; 172: 219227.
36 Wu Y-C, Lin Y-C, Yu H-L, Chen J-H, Chen T-F, Sun Y et al. Association between air pollutants and dementia risk in the elderly. Alzheimers Dement 2015; 1: 220228.
37 Oudin A, Forsberg B, Adolfsson AN, Lind N, Modig L, Nordin M et al. Trafc-related air pollution and dementia incidence in Northern Sweden: a Longitudinal Study. Environ Health Perspect 2016; 124: 306312.
38 Kioumourtzoglou MA, Schwartz JD, Weisskopf MG, Melly SJ, Wang Y, Dominici F et al. Long-term PM2.5 Exposure and Neurological Hospital Admissions in the Northeastern United States. Environ Health Perspect 2016; 124: 2329.
39 Jung CR, Lin YT, Hwang BF. Ozone, particulate matter, and newly diagnosed Alzheimers disease: a population-based cohort study in Taiwan. Journal of Alzheimers disease: JAD 2015; 44: 573584.
40 Chang KH, Chang MY, Muo CH, Wu TN, Chen CY, Kao CH. Increased risk of dementia in patients exposed to nitrogen dioxide and carbon monoxide: a population-based retrospective cohort study. PLoS ONE 2014; 9: e103078.
41 Kioumourtzoglou MA, Schwartz JD, Weisskopf MG, Melly SJ, Wang Y, Dominici F et al. Long-term PM exposure and neurological hospital admissions in the Northeastern United States. Environ Health Perspect 2015; 124: 2329.
42 Taylor DH Jr, Fillenbaum GG, Ezell ME. The accuracy of medicare claims data in identifying Alzheimers disease. J Clin Epidemiol 2002; 55: 929937.
43 Hayden KM, Farmer KM. Invited commentary: The importance of studying environmental risk factors for dementia. Alzheimers Dement 2015; 1: 268269.
44 Langa KM. Is the risk of Alzheimers disease and dementia declining? Alzheimers Res Ther 2015; 7: 34.
45 Barendregt JJ, Veerman JL. Categorical versus continuous risk factors and the calculation of potential impact fractions. J Epidemiol Community Health 2010; 64: 209212.
46 Kim SH, Knight EM, Saunders EL, Cuevas AK, Popovech M, Chen LC et al.
Rapid doubling of Alzheimers amyloid-beta40 and 42 levels in brains of mice exposed to a nickel nanoparticle model of air pollution. F1000Research 2012; 1: 70.
47 Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O et al. Amyloid beta deposition, neurodegeneration, and cognitive decline in sporadic Alzheimers disease: a prospective cohort study. Lancet Neurol 2013; 12: 357367.
48 Squire LR, Zola-Morgan S. The medial temporal lobe memory system. Science 1991; 253: 13801386.
49 Jagust W. Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron 2013; 77: 219234.
50 Allen JL, Oberdorster G, Morris-Schaffer K, Wong C, Klocke C, Sobolewski M et al.
Developmental neurotoxicity of inhaled ambient ultrane particle air pollution: parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology 2015. pii: S0161-813X(15)30048-6. doi: 10.1016/j.neuro.2015.12.014.
51 Peterson BS, Rauh VA, Bansal R, Hao X, Toth Z, Nati G et al. Effects of prenatal exposure to air pollutants (polycyclic aromatic hydrocarbons) on the development of brain white matter, cognition, and behavior in later childhood. JAMA Psychiatry 2015; 72: 531540.
52 Casanova R, Wang X, Reyes J, Akita Y, Serre ML, Vizuete W et al. A voxel-based morphometry study reveals local brain structural alterations associated with ambient ne particles in older women. Front Hum Neurosci 2016; 10: 495.
53 Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol 2011; 70: 960969.
54 Zarow C, Vinters HV, Ellis WG, Weiner MW, Mungas D, White L et al. Correlates of hippocampal neuron number in Alzheimers disease and ischemic vascular dementia. Ann Neurol 2005; 57: 896903.
55 Adami HO, Berry SC, Breckenridge CB, Smith LL, Swenberg JA, Trichopoulos D et al. Toxicology and epidemiology: improving the science with a framework for combining toxicological and epidemiological evidence to establish causal inference. Toxicol Sci 2011; 122: 223234.
56 Matthews JN, Altman DG. Statistics notes. Interaction 2: Compare effect sizes not P values. BMJ 1996; 313: 808.
57 Ward A, Crean S, Mercaldi CJ, Collins JM, Boyd D, Cook MN et al. Prevalence of apolipoprotein E4 genotype and homozygotes (APOE e4/4) among patients diagnosed with Alzheimers disease: a systematic review and meta-analysis.Neuroepidemiology 2012; 38: 117.
58 Prince M, Acosta D, Ferri CP, Guerra M, Huang Y, Llibre Rodriguez JJ et al.
Dementia incidence and mortality in middle-income countries, and associations with indicators of cognitive reserve: a 10/66 Dementia Research Group population-based cohort study. Lancet 2012; 380: 5058.
59 Calderon-Garciduenas L, Kavanaugh M, Block M, DAngiulli A, Delgado-Chavez R, Torres-Jardon R et al. Neuroinammation, hyperphosphorylated tau, diffuse amyloid plaques, and down-regulation of the cellular prion protein in air pollution exposed children and young adults. J Alzheimers Dis 2012; 28: 93107.
60 Schikowski T, Vossoughi M, Vierkotter A, Schulte T, Teichert T, Sugiri D et al.
Association of air pollution with cognitive functions and its modication by APOE gene variants in elderly women. Environ Res 2015; 142: 1016.
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the articles Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
Web End =http://creativecommons.org/licenses/ http://creativecommons.org/licenses/by/4.0/
Web End =by/4.0/
The Author(s) 2017
Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)
Translational Psychiatry (2017), 1 8
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Copyright Nature Publishing Group Jan 2017
Abstract
Exposure to particulate matter (PM) in the ambient air and its interactions with APOE alleles may contribute to the acceleration of brain aging and the pathogenesis of Alzheimer's disease (AD). Neurodegenerative effects of particulate air pollutants were examined in a US-wide cohort of older women from the Women's Health Initiative Memory Study (WHIMS) and in experimental mouse models. Residing in places with fine PM exceeding EPA standards increased the risks for global cognitive decline and all-cause dementia respectively by 81 and 92%, with stronger adverse effects in APOE [varepsilon]4/4 carriers. Female EFAD transgenic mice (5xFAD +/- /human APOE [varepsilon]3 or [varepsilon]4+/+ ) with 225 h exposure to urban nanosized PM (nPM) over 15 weeks showed increased cerebral β-amyloid by thioflavin S for fibrillary amyloid and by immunocytochemistry for Aβ deposits, both exacerbated by APOE [varepsilon]4. Moreover, nPM exposure increased Aβ oligomers, caused selective atrophy of hippocampal CA1 neurites, and decreased the glutamate GluR1 subunit. Wildtype C57BL/6 female mice also showed nPM-induced CA1 atrophy and GluR1 decrease. In vitro nPM exposure of neuroblastoma cells (N2a-APP/swe) increased the pro-amyloidogenic processing of the amyloid precursor protein (APP). We suggest that airborne PM exposure promotes pathological brain aging in older women, with potentially a greater impact in [varepsilon]4 carriers. The underlying mechanisms may involve increased cerebral Aβ production and selective changes in hippocampal CA1 neurons and glutamate receptor subunits.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer