Full text

Turn on search term navigation

© 2017 Xu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The purpose of this study is to examine the capability of photoacoustic (PA) imaging (PAI) in assessing the unique molecular and architectural features in ocular tumors. A real-time PA and ultrasonography (US) parallel imaging system based on a research US platform was developed to examine retinoblastoma in mice in vivo and human retinoblastoma and uveal melanoma ex vivo. PA signals were generated by optical illumination at 720, 750, 800, 850, 900 and 950 nm delivered through a fiber optical bundle. The optical absorption spectra of the tumors were derived from the PA images. The optical absorption spectrum of each tumor was quantified by fitting to a polynomial model. The microscopic architectures of the tumors were quantified by frequency domain analysis of the PA signals. Both the optical spectral and architectural features agree with the histological findings of the tumors. The mouse and human retinoblastoma showed comparable total optical absorption spectra at a correlation of 0.95 (p<0.005). The quantitative PAI features of human retinoblastoma and uveal melanoma have shown statistically significant difference in two tailed t-tests (p<0.05). Fully compatible with the concurrent procedures, PAI could be a potential tool complementary to other diagnostic modalities for characterizing intraocular tumors.

Details

Title
Photoacoustic imaging features of intraocular tumors: Retinoblastoma and uveal melanoma
Author
Xu, Guan; Xue, Yafang; Zeynep Gürsel Özkurt; Slimani, Naziha; Hu, Zizhong; Wang, Xueding; Xia, Kewen; Teng, Ma; Zhou, Qifa; Demirci, Hakan
First page
e0170752
Section
Research Article
Publication year
2017
Publication date
Feb 2017
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1871525980
Copyright
© 2017 Xu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.