Full text

Turn on search term navigation

Copyright © 2017 Zheng Pan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The unconditionally stable method, Associated-Hermite FDTD, has attracted more and more attentions in computational electromagnetic for its time-frequency compact property. Because of the fewer orders of AH basis needed in signal reconstruction, the computational efficiency can be improved further. In order to further improve the accuracy of the traditional AH-FDTD, a high-order algorithm is introduced. Using this method, the dispersion error induced by the space grid can be reduced, which makes it possible to set coarser grid. The simulation results show that, on the condition of coarse grid, the waveforms obtained from the proposed method are matched well with the analytic result, and the accuracy of the proposed method is higher than the traditional AH-FDTD. And the efficiency of the proposed method is higher than the traditional FDTD method in analysing 2D waveguide problems with fine-structure.

Details

Title
A Modified AH-FDTD Unconditionally Stable Method Based on High-Order Algorithm
Author
Pan, Zheng; Fu, Zhikai; Shi, Lihua; Huang, Zhengyu; Sun, Zheng
Publication year
2017
Publication date
2017
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
1872590447
Copyright
Copyright © 2017 Zheng Pan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.